TE0820 Test Board
Table of Contents

Overview .. 5
Key Features ... 5
Revision History .. 5
Release Notes and Know Issues .. 6
Requirements ... 6
 Software .. 6
 Hardware ... 6
Content ... 8
 Design Sources ... 8
 Additional Sources ... 8
 Prebuilt ... 8
 Download ... 9
Design Flow .. 10
Launch .. 12
 Programming .. 12
 QSPI .. 12
 SD ... 12
 JTAG .. 12
 Usage .. 12
 Linux ... 13
 Vivado HW Manager ... 13
System Design - Vivado ... 15
 Block Design ... 15
 PS Interfaces .. 15
 Constrains ... 16
 Basic module constrains ... 16
 Design specific constrain ... 16
Software Design - SDK/HSI .. 17
 Application .. 17
 zynqmp_fsbl .. 17
 zynqmp_fsbl_flash .. 17
 zynqmp_pmufw ... 17
 Hello TE0820 ... 17
 U-Boot .. 17
Software Design - PetaLinux ... 18
 Config .. 18
 U-Boot .. 18
 Device Tree ... 18
 Kernel .. 20
 Rootfs .. 20
 Applications ... 20
 startup ... 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Software</td>
<td>21</td>
</tr>
<tr>
<td>SI5338</td>
<td>21</td>
</tr>
<tr>
<td>Appx. A: Change History and Legal Notices</td>
<td>22</td>
</tr>
<tr>
<td>Document Change History</td>
<td>22</td>
</tr>
<tr>
<td>Legal Notices</td>
<td>22</td>
</tr>
<tr>
<td>Data privacy</td>
<td>22</td>
</tr>
<tr>
<td>Document Warranty</td>
<td>23</td>
</tr>
<tr>
<td>Limitation of Liability</td>
<td>23</td>
</tr>
<tr>
<td>Copyright Notice</td>
<td>23</td>
</tr>
<tr>
<td>Technology Licenses</td>
<td>23</td>
</tr>
<tr>
<td>Environmental Protection</td>
<td>23</td>
</tr>
<tr>
<td>REACH, RoHS and WEEE</td>
<td>24</td>
</tr>
</tbody>
</table>
Online version of this manual and other related documents can be found at https://wiki.trenz-electronic.de/display/PD/Trenz+Electronic+Documentation
Overview

ZynqMP PS Design with Linux Example and simple frequency counter to measure SI5338 Reference CLK with Vivado HW-Manager.

Key Features

- PetaLinux
- SD
- ETH
- USB
- I2C
- RTC
- FMeter
- Modified FSBL for SI5338 programming
- Special FSBL for QSPI programming

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Vivado</th>
<th>Project Built</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-06-19</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_10_20180619160713.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_10_20180619160728.zip</td>
<td>John Hartfiel</td>
<td>• bugfix board part files BANK1 MIO voltages
• Add "dummy" PS USB3 parameter so solve problems with some USB2 devices</td>
</tr>
<tr>
<td>2018-05-24</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_10_20180524151356.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_10_20180524151342.zip</td>
<td>John Hartfiel</td>
<td>• solved Linux Flash issue
• new assembly variant</td>
</tr>
<tr>
<td>2018-04-25</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_07_20180425134435.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_07_20180425134459.zip</td>
<td>John Hartfiel</td>
<td>• new assembly variants</td>
</tr>
<tr>
<td>2018-02-06</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_06_20180206203359.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_06_20180206203414.zip</td>
<td>John Hartfiel</td>
<td>• solved JTAG/Linux issue</td>
</tr>
<tr>
<td>2018-02-01</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_05_20180201094319.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_05_20180201094724.zip</td>
<td>John Hartfiel</td>
<td>• board part csv update</td>
</tr>
<tr>
<td>2018-01-24</td>
<td>2017.4</td>
<td>TE0820-test_board-vivado_2017.4-build_05_20180124085247.zip
TE0820-test_board_noprebuild-vivado_2017.4-build_05_20180124085303.zip</td>
<td>John Hartfiel</td>
<td>• rework board part files
• solved USB, QSPI and PHy issue</td>
</tr>
</tbody>
</table>
Release Notes and Know Issues

<table>
<thead>
<tr>
<th>Issues</th>
<th>Description</th>
<th>Workaround</th>
<th>To be fixed version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash access on Linux</td>
<td>Device tree is not correct on Linux</td>
<td>add compatibility to "compatible "jedec, spi-nor"**</td>
<td>Solved with 20180524 update</td>
</tr>
</tbody>
</table>
| USB UART Terminal is blocked / SDK Debugging is blocked | This happens only with 2017.4 Linux , when JTAG connection is established on Vivado HW Manager. | Do not use HW Manager connection, or if debugging is nessecary:
 1. Boot linux with usb terminal
 2. From the terminal: root root mount ifconfig eth0
 3. Open two new SSH terminals via ethernet: root root , run user application ...
 4. Exit and close the usb terminal | Solved with 20180206 update |

Requirements

Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivado</td>
<td>2017.4</td>
<td>needed</td>
</tr>
<tr>
<td>SDK</td>
<td>2017.4</td>
<td>needed</td>
</tr>
<tr>
<td>PetaLinux</td>
<td>2017.4</td>
<td>needed</td>
</tr>
<tr>
<td>SI5338 Clock Builder</td>
<td>---</td>
<td>optional</td>
</tr>
</tbody>
</table>

Hardware

Basic description of TE Board Part Files is available on TE Board Part Files.

Complete List is available on <design name>/board_files/*_board_files.csv
Design supports following modules:

<table>
<thead>
<tr>
<th>Module Model</th>
<th>Board Part Short Name</th>
<th>PCB Revision Support</th>
<th>DDR</th>
<th>QSPI Flash</th>
<th>Others</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE0820-ES1</td>
<td>es1</td>
<td>REV01</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td>• use slower DDR speed</td>
</tr>
<tr>
<td>TE0820-02-2EG-1E</td>
<td>2eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-2EG-1E3</td>
<td>2eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td>2.5 mm Samtec connectors</td>
</tr>
<tr>
<td>TE0820-02-2EG-1EA</td>
<td>2eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-2EG-1EE</td>
<td>2eg_1ee</td>
<td>REV02</td>
<td>2GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-2EG-1EL</td>
<td>2eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td>2.5 mm Samtec connectors</td>
<td></td>
</tr>
<tr>
<td>TE0820-02-2CG-1E</td>
<td>2cg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-2CG-1EA</td>
<td>2cg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3EG-1E</td>
<td>3eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3EG-1E3</td>
<td>3eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td>2.5 mm Samtec connectors</td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3EG-1EA</td>
<td>3eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3EG-1EL</td>
<td>3eg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td>2.5 mm Samtec connectors</td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3CG-1E</td>
<td>3cg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-3CG-1EA</td>
<td>3cg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-02-4CG-1EA</td>
<td>4cg_1e</td>
<td>REV02</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE0820-03-4EV-1EA</td>
<td>4ev_1e</td>
<td>REV03</td>
<td>1GB</td>
<td>128</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design supports following carriers:

<table>
<thead>
<tr>
<th>Carrier Model</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE0701</td>
<td>• Important: See restrictions on usage with 7 Serie Carriers: 4 x 5 SoM Carriers</td>
</tr>
</tbody>
</table>
| TE0703 | • Important: See restrictions on usage with 7 Serie Carriers: 4 x 5 cm carriers
 • Used as reference carrier. |
| TE0705 | • Important: See restrictions on usage with 7 Serie Carriers: 4 x 5 SoM Carriers |
Carrier Model | Notes
--- | ---
TE0706 | Important: See restrictions on usage with 7 Serie Carriers: 4 x 5 SoM Carriers

Carrier Model	Notes
TEBA0841	Important: See restrictions on usage with 7 Serie Carriers: 4 x 5 SoM Carriers
No SD Slot available, pins goes to Pin Header	
For TEBA0841 REV01, please contact TE support	

Additional HW Requirements:

Additional Hardware	Notes
USB Cable for JTAG/UART | Check Carrier Board and Programmer for correct typ |
XMOD Programmer | Carrier Board dependent, only if carrier has no own FTDI |
Cooler | It's recommended to use cooler on ZynqMP device |

Content

For general structure and of the reference design, see Project Delivery

Design Sources

Type	Location	Notes
Vivado | <design name>/block_design
<design name>/constraints
<design name>/ip_lib | Vivado Project will be generated by TE Scripts |
SDK/HSI | <design name>/sw_lib | Additional Software Template for SDK/HSI and apps_list.csv with settings for HSI |
PetaLinux | <design name>/os/petalmx | PetaLinux template with current configuration |

Additional Sources

Type	Location	Notes
Si5338 | <design name>/misc/Si5338 | Si5338 Project with current PLL Configuration |

Prebuilt

File	File-Extension	Description
BIF-File | *.bif | File with description to generate Bin-File |
BIN-File | *.bin | Flash Configuration File with Boot-Image (Zynq-FPGAs) |
BIT-File | *.bit | FPGA (PL Part) Configuration File |
DebugProbes-File | *.ltx | Definition File for Vivado/Vivado Labtools Debugging Interface |
Diverse Reports | --- | Report files in different formats |
Hardware-Platform-Specification-Files | *.hdf | Exported Vivado Hardware Specification for SDK/HSI and PetaLinux |
Download

Reference Design is only usable with the specified Vivado/SDK/PetaLinux/SDx version. Do never use different Versions of Xilinx Software for the same Project.

Reference Design is available on:

- TE0820 "Test Board" Reference Design
Design Flow

Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first launch.

Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.

See also:

- Vivado/SDK/SDSoC#XilinxSoftware-BasicUserGuides
- Vivado Projects
- Project Delivery.

The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "._create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.

TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also executed by Xilinx Vivado/SDK GUI. For currently Scripts limitations on Win and Linux OS see: Project Delivery Currently limitations of functionality

1. _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell:

2. Press 0 and enter for minimum setup

3. (optional Win OS) Generate Virtual Drive or use short directory for the reference design (for example x:\<design name>)

4. Create Project
 a. Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
 Note: Select correct one, see TE Board Part Files
5. Create HDF and export to prebuilt folder
 a. Run on Vivado TCL: TE::hw_build_design -export_prebuilt
 Note: Script generate design and export files into \prebuilt\hardware\<short dir>. Use GUI is the same, except file export to prebuilt folder

6. Create Linux (bl31.elf, uboot.elf and image.ub) with exported HDF
 a. HDF is exported to "\prebuilt\hardware\<short name>"
 Note: HW Export from Vivado GUI create another path as default workspace.
 b. Create Linux images on VM, see PetaLinux KICKstart
 i. Use TE Template from /os/petalinux
 Note: run init_config.sh before you start petalinux config. This will set correct temporary path variable.

7. Add Linux files (bl31.elf, uboot.elf and image.ub) to prebuilt folder
 a. "\prebuilt\os\petalinux\default" or "\prebuilt\os\petalinux\<short name>"
 Notes: Scripts select "\prebuilt\os\petalinux\<short name>", if exist, otherwise "\prebuilt\os\petalinux\default"

8. Generate Programming Files with HSI/SDK
 a. Run on Vivado TCL: TE::sw_run_hsi
 Note: Scripts generate applications and bootable files, which are defined in "sw_lib\apps_list.csv"
 b. (alternative) Start SDK with Vivado GUI or start with TE Scripts on Vivado TCL: TE::sw_run_sdk
 Note: See SDK Projects
Launch

Programming

⚠️ Check Module and Carrier TRMs for proper HW configuration before you try any design.

Xilinx documentation for programming and debugging: [Vivado/SDK/SDSoC-Xilinx Software Programming and Debugging](http://www.trenz-electronic.de)

Note: Depending on CPLD Firmware and Boot Mode settings, QSPI boot with Linux image on SD or complete SD Boot is possible.

QSPI

Optional for Boot.bin on QSPI Flash and image.ub on SD.

1. Connect JTAG and power on carrier with module
2. Open Vivado Project with "vivado_open_existing_project_gui_mode.cmd" or if not created, create with "vivado_create_project_gui_mode.cmd"
3. Type on Vivado TCL Console: TE::pr_program_flash_binfile -swapp u-boot
 Note: To program with SDK/Vivado GUI, use special FSBL (zynqmp_fsbl_flash) on setup
4. Copy image.ub on SD-Card
 • For correct prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
5. Insert SD-Card

SD

Use this description for CPLD Firmware with SD Boot selectable.

1. Copy image.ub and Boot.bin on SD-Card.
 • For correct prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
2. Insert SD-Card in SD-Slot.

JTAG

Not used on this Example.

Usage

1. Prepare HW like described on section Programming
2. Connect UART USB (most cases same as JTAG)
3. Select SD Card or QSPI as Boot Mode (Depends on used programming variant)
 Note: See TRM of the Carrier, which is used.
4. Power On PCB
 Note: 1. ZynqMP Boot ROM loads PMU Firmware and FSBL from SD/QSPI Flash into OCM, 2. FSBL loads ATF(bl31.elf) and U-boot from SD into DDR, 3. U-boot load Linux from SD into DDR

Linux

1. Open Serial Console (e.g. putty)
 a. Speed: 115200
 b. COM Port: Win OS, see device manager, Linux OS see dmesg grep tty (UART is *USB1)

2. Linux Console:
 Note: Wait until Linux boot finished For Linux Login use:
 a. User Name: root
 b. Password: root

3. You can use Linux shell now.
 a. I2C 0 Bus type: i2cdetect -y -r 0
 b. RTC check: dmesg grep rtc
 c. ETH0 works with udhcpc
 d. USB type "lsusb" or connect USB2.0 device

Vivado HW Manager

SI5338_CLK0 Counter:

1. Open Vivado HW-Manager and add VIO signal to dashboard (*.ltx located on prebuilt folder).
 a. Set radix from VIO signals to unsigned integer.
 Note: Frequency Counter is inaccurate and displayed unit is Hz

SI5338 CLK is configured to 200MHz by default.

PHY LEDS

- See: TE0820-REV01_REV02 CPLD#X0/X1Pin

CPLD Firmware:

- See: TE0820-REV01_REV02 CPLD#X0/X1Pin
System Design - Vivado

Block Design

Activated interfaces:

<table>
<thead>
<tr>
<th>Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR</td>
<td></td>
</tr>
<tr>
<td>QSPI</td>
<td>MIO</td>
</tr>
<tr>
<td>SD0</td>
<td>MIO</td>
</tr>
<tr>
<td>SD1</td>
<td>MIO</td>
</tr>
<tr>
<td>I2C0</td>
<td>MIO</td>
</tr>
<tr>
<td>UART0</td>
<td>MIO</td>
</tr>
</tbody>
</table>
Type | Note
---|---
GPIO0 | MIO
SWDT0..1 | MIO
TTC0..3 | MIO
GEM3 | MIO
USB0 | MIO

Constrains

Basic module constrains

```
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.UNUSEDPIN PULLNONE [current_design]
```

Design specific constrain

```
set_property PACKAGE_PIN K9 [get_ports {SI5338_CLK0_D_clk_p[0]}]
set_property IOSTANDARD LVDS [get_ports {SI5338_CLK0_D_clk_p[0]}]
set_property DIFF_TERM TRUE [get_ports {SI5338_CLK0_D_clk_p[0]}]

set_property PACKAGE_PIN H1 [get_ports {x0_firmware[0]}]
set_property IOSTANDARD LVCMOS18 [get_ports {x0_firmware[0]}]
set_property PACKAGE_PIN J1 [get_ports {x1_phy_led[0]}]
set_property IOSTANDARD LVCMOS18 [get_ports {x1_phy_led[0]}]
```
Software Design - SDK/HSI

For SDK project creation, follow instructions from:

SDK Projects

Application

zynqmp_fsbl

TE modified 2017.4 FSBL

Changes:

- Si5338 Configuration, ETH+OTG Reset over GPIO see xfsbl_board.c, xfsbl_board.h
- Add register_map.h, si5338.c, si5338.h

zynqmp_fsbl_flash

TE modified 2017.4 FSBL

Changes:

- Set FSBL Boot Mode to JTAG
- Disable Memory initialisation

zynqmp_pmufw

Xilinx default PMU firmware.

Hello TE0820

Hello TE0820 is a Xilinx Hello World example as endless loop instead of one console output.

U-Boot

U-Boot.elf is generated with PetaLinux. SDK/HSI is used to generate Boot.bin.
Software Design - PetaLinux

For PetaLinux installation and project creation, follow instructions from:

- PetaLinux KICKstart

Config

No changes.

U-Boot

- Change platform-top.h

```c
#include <configs/platform-auto.h>
#define CONFIG_SYS_BOOTM_LEN 0xF000000

#define DFU_ALT_INFO_RAM 
   "dfu_ram_info" 
   "setenv dfu_alt_info " 
   "image.ub ram ${netstart} 0x1e000000\0" 
   "dfu_ram=run dfu_ram_info && dfu 0 ram 0\0" 
   "thor_ram=run dfu_ram_info && thordown 0 ram 0\0"

#define DFU_ALT_INFO 
   DFU_ALT_INFO_RAM

/*Required for uartless designs */
#ifndef CONFIG_BAUDRATE
#define CONFIG_BAUDRATE 115200
#endif
#endif

/*select sd instead of mmc for autoboot */

#define CONFIG_BOOTCOMMAND "run uenvboot; mmcinfo & & fatload mmc 1 ${netstart} 
   ${kernel_image}; bootm ${netstart}"`
```

Device Tree

```c
#include/ "system-conf.dtsi"
/
};

/* SDIO */
```
&sdhci1 {
 disable-wp;
 no-1-8-v;
};

/* ETH PHY */
&gem3 {
 status = "okay";
 ethernet_phy0: ethernet-phy@0 {
 compatible = "marvell,88e1510";
 device_type = "ethernet-phy";
 reg = <1>;
 };
};

/* USB 2.0 */
&dwc3_0 {
 status = "okay";
 dr_mode = "host";
 maximum-speed = "high-speed";
 /delete-property/phy-names;
 /delete-property/phys;
 /delete-property/snps,usb3_lpm_capable;
};

/* QSPI PHY */
&qspi {
 #address-cells = <1>;
 #size-cells = <0>;
 status = "okay";
 flash0: flash@0 {
 compatible = "jedec,spi-nor";
 reg = <0>/;
 #address-cells = <1>;
 #size-cells = <1>;
 };
};

/* DMA not used: Reduce error messages on linux. */
&lpd_dma_chan1 {
 status = "disabled";
};
&lpd_dma_chan2 {
 status = "disabled";
};
&lpd_dma_chan3 {
 status = "disabled";
};
&lpd_dma_chan4 {
 status = "disabled";
};
&lpd_dma_chan5 {
 status = "disabled";
};
&lpd_dma_chan6 {
Kernel

Deactivate:

- `CONFIG_CPU_IDLE` (only needed to fix JTAG Debug issue)
- `CONFIG_CPU_FREQ` (only needed to fix JTAG Debug issue)

Rootfs

Activate:

- `i2c-tools`

Applications

startup

Script App to load init.sh from SD Card if available.

See: `/os/petalinux/project-spec/meta-user/recipes-apps/startup/files`
Additional Software

SI5338

Download ClockBuilder Desktop for SI5338

1. Install and start ClockBuilder
2. Select SI5338
3. Options Open register map file
 Note: File location <design name>/misc/Si5338/RegisterMap.txt
4. Modify settings
5. Options save C code header files
6. Replace Header files from FSBL template with generated file
Appx. A: Change History and Legal Notices

Document Change History

To get content of older revision got to “Change History” of this page and select older document revision number.

<table>
<thead>
<tr>
<th>Date</th>
<th>Document Revision</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-10-31</td>
<td>v.42</td>
<td>John Hartfiel</td>
<td>• Design Files Update</td>
</tr>
<tr>
<td>13.02.2018</td>
<td>v.29</td>
<td>John Hartfiel</td>
<td>• Design Files Update</td>
</tr>
<tr>
<td>2018-02-06</td>
<td>v.27</td>
<td>John Hartfiel</td>
<td>• Design Files Update</td>
</tr>
<tr>
<td>2018-01-29</td>
<td>v.26</td>
<td>John Hartfiel</td>
<td>• Update Known Issues</td>
</tr>
<tr>
<td>2018-01-24</td>
<td>v.25</td>
<td>John Hartfiel</td>
<td>• Release 2017.4</td>
</tr>
<tr>
<td>2018-01-10</td>
<td>v.24</td>
<td>John Hartfiel</td>
<td>• Update Known Issues</td>
</tr>
<tr>
<td>2017-12-20</td>
<td>v.23</td>
<td>John Hartfiel</td>
<td>• Typo correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Update HW Module Table Description</td>
</tr>
<tr>
<td>2017-11-21</td>
<td>v.19</td>
<td>John Hartfiel</td>
<td>• Design Update</td>
</tr>
<tr>
<td>2017-11-20</td>
<td>v.18</td>
<td>John Hartfiel</td>
<td>• Design Update</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Add Variants with 128MB Flash</td>
</tr>
<tr>
<td>2017-11-13</td>
<td>v.16</td>
<td>John Hartfiel</td>
<td>• Update Carrier sections</td>
</tr>
<tr>
<td>2017-11-06</td>
<td>v.15</td>
<td>John Hartfiel</td>
<td>• Typo corrected</td>
</tr>
<tr>
<td>2017-10-23</td>
<td>v.13</td>
<td>John Hartfiel</td>
<td>• Update Key Features section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Style Update Additional Software section</td>
</tr>
<tr>
<td>2017-10-19</td>
<td>v.9</td>
<td>John Hartfiel</td>
<td>• Release 2017.2</td>
</tr>
<tr>
<td>2017-09-11</td>
<td>v.1</td>
<td>John Hartfiel</td>
<td>Initial release</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>John Hartfiel</td>
<td></td>
</tr>
</tbody>
</table>

Legal Notices

Data privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.
REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

2018-09-18