Features

- High-density plug-in Xilinx Spartan-3E module
- **USB 2.0** interface with high speed (480 Mbit/s) data rate
- Large **SPI flash** for configuration and user storage accessible via USB or SPI connector
- Large **DDR-SDRAM**
- FPGA configuration is implemented via JTAG, SPI Flash or USB
- 3 on-board high-power, high-efficiency, switch-mode **DC-DC converters** (1 A for each voltage rail: 1.2 V, 2.5 V, 3.3 V)
- Power supply via USB or B2B (carrier board)
- Flexible expansion via high-density **shockproof B2B** (board-to-board) connectors
- Most I/O's on the B2B connectors are routed as **LVDS pairs**
- **Industrial temperature grade** available on request
- **Low-cost, versatile and ruggedized design**

Specifications

- **FPGA**: Xilinx Spartan-3E XC3S500E – XC3S1600E
- **USB controller**: Cypress EZ-USB FX2 USB 2.0 microcontroller CY7C68013A-56LFX
- **Non volatile memory**: 16 MBit - 64 Mbit SPI Flash for FPGA-configuration and user data
- **Volatile memory**: 512 Mbit x 16 DDR SDRAM with up to 666 Mbyte/s
- Up to **110 FPGA user I/Os**
- Supply voltage range: 4.0 V – 5.5 V
- 1 push-button
- 1 LED
- Small size (only 40.5 mm x 47.5 mm)

Evenly spread supply pins for good **signal integrity**

Figure 1: TE0300: bottom view.

Figure 2: TE0300: top view.
Applications

- IP (intellectual property) development
- Digital signal processing
- Image processing
- Cryptography
- Industrial control
- Low-power design
- General-purpose prototyping platform

Description

The FPGA industrial micromodule integrates a leading edge Xilinx Spartan-3E FPGA, an USB 2.0 microcontroller, configuration Flash, DDR SDRAM and power supplies on a tiny footprint. A large number of configurable I/Os are provided via B2B mini-connectors.

The module is intended to be used as an OEM board, or to be combined with our carrier boards. It is a powerful system widely used for educational and research activities.

Boards with other configurations, larger FPGA's or equipped with industrial temperature grade parts are available on request.

Software for SPI flash programming over USB as well as reference designs for high speed data transfer over USB are included.

Physical Features

Board Dimensions

The module measures 40.50 mm by 47.50 mm.

Board-to-Board Connectors

The ordering numbers of the connector receptacles are given in Table 1.
The on-board receptacles mate with their corresponding headers on the carrier board (Figure 6).

The ordering number of the headers is given in Table 2.

Figure 6: mating header.

Table 2: equivalent part numbers of the mating connectors.

![Diagram of stacking height](image)

Figure 7: stacking height (h). The stacking height of the TE0300 B2B connectors is 7 (seven) mm. The stacking height does not include the solder paste thickness.

USB Connector

The micromodule uses a mini-USB (B type) receptacle connector.

Figure 8: mini-USB (B type) receptacle connector.

Power Supply

The module can be powered by the B2B connector or the USB connector. If both power supplies are available, the B2B connector power supply takes precedence, disabling the USB power supply automatically.

B2B Connector Power Supply

The B2B connector power supply requires a single nominal 5 V DC power supply. The power is usually supplied to the module through the 5 V contacts (5Vb2b) of the B2B connectors J5 (see Appendix). The recommended minimum supply.
voltage is 4 V. The maximum supply voltage is 5.5 V. The recommended maximum continuous supply current is 1.5 A.

USB Power Supply

The module is powered by the USB connector if the following conditions are met:

- the module is equipped with an USB connector,
- the module is connected to a USB bus,
- no power supply is provided by the B2B connectors.

In this case, other components (e.g. extension or carrier boards) may also be powered by the corresponding 5 Volt line (5V) of the B2B connector J5.

On-board Power Rails

Three on-board voltage regulators provide the following power supply rails needed by the components on the micro-module:

- 1.2 V, 1 A max
- 2.5 V, 1 A max
- 3.3 V, 1 A max

The power rails are available for the FPGA and can be shared with a baseboard by the corresponding lines of the B2B connectors J4 and J5. Please note that the power consumption of the FPGA is highly dependent on the design actually loaded. So please use a tool like Xilinx Xpower to determine the expected power consumption.

Even if the provided voltages of the module are not used on the baseboard, it is recommended to bypass them to ground with 10 nF - 100 nF capacitors.

I/O Banks Power Supply

The Spartan-3E architecture organizes I/Os into four I/O banks (see Table 3).

<table>
<thead>
<tr>
<th>Bank</th>
<th>Supply Voltage (V)</th>
<th>Min (V)</th>
<th>Max (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>VccIO</td>
<td>1.2</td>
<td>3.3</td>
</tr>
<tr>
<td>B1</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B3</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: I/O banks power supply.

Voltage for banks B1, B2 and B3 is fixed respectively to 2.5 V, 3.3 V and 3.3 V.

Voltage VccIO for bank B0 shall span from 1.2 V to 3.3 V. VccIO can be supplied either externally or internally to the micromodule.

Warning! Spartan-3 I/Os are not 5 V tolerant. Applying more than the recommended operating voltages at any pin, results in a damaged FPGA (see Xilinx Answer AR#19146).

Externally Supplied VccIO

VccIO can be externally supplied over the B2B connector J4. If bank B0 is not used, then VccIO can be left open.

Internally Supplied VccIO

If VccIO is not externally supplied, it can be internally supplied by one of the internal power rails of 2.5 V and 3.3 V. This is possible by short-circuiting one of the two pad pairs placed on the right of connector J4 at the top right corner of the bottom side of the micromodule.

Figure 9 shows how to short-circuit VccIO to internal 3.3 V power rail.

Figure 10 shows how to short-circuit VccIO to internal 2.5 V power rail.
Two suitable ways of short-circuiting the paid pair are by means of a zero-ohm 0603 (1608 metric) chip resistor or a solder blob.

FPGA User I/Os

A total of 110 FPGA user I/Os are available on corresponding contacts of B2B connectors J4 and J5 (see Appendix).

- 37 differential digital I/O pairs: each pair is configurable as 2 single-ended digital I/Os, corresponding to a maximum of 74 single-ended digital I/Os;
- 4 differential clock input pairs: each pair is configurable as differential digital I/O pair or 2 single-ended clock inputs or 2 single-ended digital I/Os (or combination thereof), corresponding to from a maximum of 8 independent clock inputs to a maximum of 8 independent digital I/Os;
- 1 differential clock input pair: the pair is configurable as differential digital input pair or as 2 single-ended clock inputs or 2 single-ended digital inputs (or combination thereof), corresponding to from a maximum of 2 independent clock inputs to a maximum of 2 independent digital inputs;
- 21 single-ended digital I/Os;
- 5 single-ended inputs.

Table 4 summarizes the maximum available FPGA user I/Os divided by supply voltage.

<table>
<thead>
<tr>
<th>type</th>
<th>VccIO</th>
<th>3.3 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff. I/O pairs</td>
<td>≤ 18</td>
<td>≤ 23</td>
</tr>
<tr>
<td>diff inputs</td>
<td>≤ 1</td>
<td>none</td>
</tr>
<tr>
<td>diff. clocks</td>
<td>≤ 4</td>
<td>≤ 1</td>
</tr>
<tr>
<td>s. e. I/Os</td>
<td>≤ 46</td>
<td>≤ 58</td>
</tr>
<tr>
<td>s. e. inputs</td>
<td>≤ 2</td>
<td>≤ 4</td>
</tr>
<tr>
<td>s. e. clocks</td>
<td>≤ 8</td>
<td>≤ 3</td>
</tr>
</tbody>
</table>

Differential Pairs

The micromodule has a total of 42 differential signal pairs routed pairwise with a differential impedance of 100 ohm to adjacent connector pins. These lines can be used for high speed signaling up to 666 Mbit/s per differential pair (see Xilinx Application Note XAPP485).

User Button and LED

LED

The LED is lit when the U_LED line (pin R10) is set high as detailed in the following table.

<table>
<thead>
<tr>
<th>Signal</th>
<th>FPGA pin</th>
<th>FPGA ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_LED</td>
<td>IO_L15P_2 (bank 2)</td>
<td>R10</td>
</tr>
</tbody>
</table>

Push Button

The push button is connected to the PB input (pin V16). as detailed in the following table.
Signal	**FPGA pin**	**FPGA ball**
P| IP (bank 2)| V16

Tabelle 6: user button signal details.

The input is normally low. The input is pulled up when pressed.

Configuration Switches

The micromodule hosts 4 DIP switches on the top side: S1; S2, S3 and S4.

For customers requesting a sufficient amount of units, the micromodules can be manufactured replacing the switches by fixed connections.

DIP Switch S1

S1 enables / disables the communication between the Cypress EZ-USB FX2 microcontroller and the I2C CMOS Serial EEPROM.

Turn S1 off when programming the USB EEPROM storing the USB vendor ID and device ID. This will force the USB microcontroller to provide its default vendor ID and device ID.

<table>
<thead>
<tr>
<th>S1</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM (on)*</td>
<td>EEPROM enabled</td>
</tr>
<tr>
<td>Off (off)</td>
<td>EEPROM disabled</td>
</tr>
</tbody>
</table>

Table 7: S1 (* default: EEPROM).

For further information, please read paragraph "Software Configuration”.

DIP Switch S2

S2 enables / disables the reset line. The reset line (available also on 2 contacts of the B2B connector) resets the USB microcontroller and the FPGA.

S2 has to be turned off (Reset) if the user wants to program the SPI Flash memory in direct mode. For programming the SPI Flash memory in indirect mode over JTAG, S2 has to be turned on (Run).

<table>
<thead>
<tr>
<th>S2</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run (on)*</td>
<td>system running</td>
</tr>
<tr>
<td>Reset (off)</td>
<td>system reset</td>
</tr>
</tbody>
</table>

Table 8: S2 (*default: Run).

For further information, please read paragraph "Software Configuration”.

DIP Switch S3

S3 conditionally / unconditionally enables the 1.2 V and 2.5 V power rails.

When S3 is turned on, the 1.2 V and 2.5 V power rails are controlled by the USB microcontroller. At start-up, the USB microcontroller switches off the 1.2 V and 2.5 V power rails and starts up the module in low-power mode. After enumeration, the USB microcontroller firmware switches the 1.2 V and 2.5 V power rails on, if enough current is available from the USB bus.

When S3 is turned off, the 1.2 V and 2.5 V power rails are always enabled.

<table>
<thead>
<tr>
<th>S3</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX2 PON (on)*</td>
<td>rails controlled by FX2</td>
</tr>
<tr>
<td>PON (off)</td>
<td>rails always enabled</td>
</tr>
</tbody>
</table>

Table 9: S3 (* default: FX2 PON).

Warning! When S3 is turned on (FX2 PON), make sure that no signals are applied to the input pins when power-rails are disabled by the USB microcontroller.

The 3.3 V power-rail though is out of the control of the USB-microcontroller and is supplied down-converting the 5 V power supply provided by either the USB-bus or the B2B receptacle connector. In this case, signals that are applied to the 3.3
V I/O banks do not need to be disconnected when power-rails are disabled by the USB microcontroller.

DIP Switch S4

S4 enables / disables the FPGA configuration through the SPI interface. The FPGA configuration through the JTAG interface cannot be disabled.

When S4 is turned on, the FPGA tries to configure from the SPI Flash memory. The FPGA can be configured by the JTAG interface at any time.

When S4 is turned off, the FPGA waits to be configured by the JTAG interface.

For further information about direct (pure SPI) / indirect (SPI over JTAG) in-system programming of SPI flash memories, please see Xilinx Application Notes XAPP951 "Configuring Xilinx FPGAs with SPI Serial Flash" and XAPP974 "Indirect Programming of SPI Serial Flash PROMs with Spartan-3A FPGAs".

<table>
<thead>
<tr>
<th>S4</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI (on)*</td>
<td>FPGA configuration: JTAG + SPI</td>
</tr>
<tr>
<td>JTAG (off)</td>
<td>FPGA configuration: JTAG</td>
</tr>
</tbody>
</table>

Table 10: S4 (default: SPI).

Warning! When downloading via parallel JTAG programmer to FPGA, it can happen that programming fails with Error: "'1': Programming terminated. DONE did not go high." Try setting DIP switch S4 to JTAG-only. A bug in certain Xilinx iMPACT versions can cause this.

DIP Switches Overview

Figure 11 summarizes functions and location of the four DIP switches.

JTAG and SPI

The offset holes for J2 and J3 allow a removable press fit of standard 0.100 inch header pins to connect the fly wires without any soldering necessary.

JTAG Header

JTAG signals are available on the dedicated header J2 through a JTAG programmer with flying leads as described in Table 11.
SPI Header

SPI signals are routed to/from bank 2 of the FPGA as detailed in Table 12 and made available on the dedicated header J3 accessible through an SPI programmer with flying leads as described in Table 13.

<table>
<thead>
<tr>
<th>Signal</th>
<th>FPGA pin</th>
<th>FPGA ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI /S</td>
<td>IO_L01P_2</td>
<td>U3</td>
</tr>
<tr>
<td>SPI D</td>
<td>IO_L03N_2</td>
<td>T4</td>
</tr>
<tr>
<td>SPI Q</td>
<td>IO_L16N_2</td>
<td>N10</td>
</tr>
<tr>
<td>SPI /C</td>
<td>IO_L26N_2</td>
<td>U16</td>
</tr>
</tbody>
</table>

Table 12: SPI signal details (bank 2).

Clock Networks

24 MHz Clock Oscillator

The module has a 24 MHz SMD clock oscillator providing a clock source for both the USB microcontroller and the FPGA as detailed in Table 14.
The module has a main SMD clock oscillator providing a clock source for the FPGA as detailed in Table 15.

Standard frequencies are 100 MHz and 125 MHz (please visit Trenz Electronic website for current ordering information). The lower the main clock frequency, the lower the module power consumption. Moreover, as the main clock is preferably used as DDR SDRAM clock, a lower clock frequency makes easier for the development tools to meet the timing requirements (particularly for DDR SDRAM). For customized boards, this clock can be changed according to user requirements.

Interface Clock (IFCLK)

The IFCLK line synchronizes the communication between the USB microcontroller and bank3 of the FPGA as detailed in Table 16.

When developing DDR SDRAM designs with Xilinx tools (e.g. MIG, MPMC, ...), you should select the following product type:

MT46V32M16-6.

Should it be not available, you can use one of the following product types:

- MT46V32M16-5
- MT46V32M16X-5B
- MT46V32M16BN-5B
The JTAG interface allows a fast, frequent but volatile configuration of the TE0300 module. However, only through the JTAG interface it is possible to develop and debug with Xilinx tools (e.g. Xilinx ChipScope, Xilinx Microprocessor Debugger).

The SPI interface allows a fast, frequent and non-volatile configuration of the TE0300 module.

Configuration of the TE0300 module through a USB host is recommended for occasional, non-volatile on-site operations such as firmware upgrade.

System Requirements

TE0300 modules can be configured through a host computer with the following system requirements:

- Operating system: Microsoft Windows 2000, Microsoft Windows XP, Microsoft Vista;
- Xilinx ISE 10.1 or later for indirect SPI in-system programming (see Xilinx Answer AR #25377);
- Xilinx EDK for some reference designs;
- Interface: USB host;
- JTAG/SPI USB cable with flying leads.

EZ-USB FX2 Microcontroller Firmware

If the EEPROM has never been programmed before (virgin board), S1 can be switched to **EEPROM**. The USB microcontroller will detect an empty EEPROM and will provide its default vendor ID and device ID to the USB host.

Module Configuration

This section describes how to configure the TE0300 module and access some of its resources.
If the EEPROM has been programmed before (EEPROM not empty), S1 must be switched to Off. The USB microcontroller will detect a missing EEPROM and will provide its default vendor ID and device ID to the USB host.

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>on (left)</th>
<th>off (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>EEPROM</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>Run</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Generic USB Microcontroller Driver installation

If the USB microcontroller (Cypress EZ-ESB FX2) driver is not installed on the host computer, then the easiest way to do it is the following:

- disconnect the micromodule or leave the micromodule unconnected;
- configure the micromodule such that the USB microcontroller will provide its default vendor ID and device ID to the USB host (i.e. S1 = OFF -- see paragraph “EZ-USB FX2 Microcontroller Firmware”);
- connect the micromodule to the host computer through the USB interface;
- wait until the operating system detects new hardware and starts the hardware assistant;
- if S1 is not already switched to EEPROM, do it now;
- answer the hardware assistant questions as shown in the following example.
Check that in the “Device Manager” under “USB-Controller” the “Cypress Generic USB Device” has been added.

Click “Options > EZ-USB Interface” to Open EZ-USB Interface window.

Now the USB microcontroller can be accessed from the host computer through dedicated software.
“S EEPROM” button refers to the small EEPROM (256 bytes) whereas the “Lg EEPROM” refers to the large EEPROM (64 kB). Press the “Lg EEPROM” button, select the “USB.iic” file and press the “Open” button to start writing to EEPROM.

Disconnect the USB cable.

Dedicated USB Firmware Driver Installation

Check the configuration switches against the following table:

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>on (left)</th>
<th>off (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>EEPROM</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>Run</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>FX2 PON</td>
<td>-</td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Reconnect the USB cable to run the newly uploaded firmware in the USB microcontroller. Under the default switch configuration, the USB microcontroller is now ready to provide dedicated vendor ID and device ID. Wait until the operating system detects new hardware and starts the hardware assistant and answer the hardware assistant questions as shown in the following example.

Upgrade progress is displayed in status window and is completed when “Download Successful” text is displayed.
Check that in the "Device Manager" under "USB-Controller" the "DEWESoft USB Device 0" has been added.

FWU File Generation

The TE0300 micromodule can be configured by means of a firmware-upgrade (FWU) file (see next section "Micromodule Configuration" for further reference). The first step in generating the FWU file is to generate the `fpga.bin` file corresponding to a given FPGA design.

Open Xilinx IMPACT from Start / Programs / Xilinx ISE / Accessories / Impact Select "create new project".
Select “prepare PROM file”.

Set "PROM File Name" to "fpga" and change "Location" to a suitable name and location.

Select “BIN” as output.

Check “Auto Select PROM”.
Navigate to your project’s IMPLEMENTATION folder and select "download.bit".

The following warning is normal :).

This is probably the one and only file with your design.

Congratulations!

Click GENERATE FILE or select from menu Operations / Generate file.
You are done.

Once you have got your `fpga.in` file, you can proceed and generate your FWU file. The FWU file is a ZIP file containing 3 files:

- `Bootload.ini` – booting settings
- `fpga.bin` – FPGA programming file
- `usb.bin` – FX2 firmware

To create your FWU file, you need to:

- replace the existing `USBFWUTool\FWUs\fpga.bin` with the latest `fpga.bin` (`Bootload.ini` and `usb.bin` are always unchanged)
- zip the 3 files
- change the `.zip` file extension to `.fwu`
- upload the file as explained in the next section (Micromodule Configuration).

Warning! file and path names are given and must NOT be changed!

Micromodule Configuration

The micromodule can now be programmed with its dedicated firmware upload tool. Turn S1, S2, S3 and S4 on. Open the dedicated firmware upgrade tool “USB Firmware Upgrade Tool” (double click the “USBFirmwareUpgradeTool.exe” file in the “USBFWUTool” folder).

Press the “...” button corresponding to the “File name” field and select for instance the sample firmware upload file “TE0300_v1012.fwu” in the “USBFWUTool\FWUs” folder.

Trenz Electronic GmbH
Press the “Upload” button to upload the micromodule firmware and check the “FPGA uploading...” progress bar.

After successful completion of the firmware upload procedure, the following message should pop up.

Reboot the micromodule with the new firmware by disconnecting and reconnecting the USB cable. You may want to test the sample application “TE0300_API_Example.exe” in the “TE0300_API_Example\Debug” folder.

To generate your own firmware upload file, please read the document “Generating_FWU_file.doc” in the “USBFWUTool” folder.

SPI Direct In-System Programming (ISP)

Make sure S2 is switched to “Reset“(off) during programming.

Connect the host computer to the micromodule through both the SPI flying leads cable and the USB cable.

Start Xilinx ISE iMPACT. The following example shows the case of iMPACT 9.2. If the “iMPACT Project” window pops up, press the “Cancel” button.

Double click the “Direct SPI Configuration” option in the “Modes” panel.

Right click the “Direct SPI Configuration” panel to add a device and select “Add SPI Device”.
You can now select the file corresponding to your device. In the following example, we will show how to select the micromodule reference device “blinking.mcs” in the “TE0300” folder.

iMPACT should now look like this.

Right click the SPI PROM device and select the “Program” operation.

Select the part name corresponding to the SPI flash present on the module (STMicroelectronics M25P32, a 32 Mbit (4M x 8) Serial Flash memory).

In the “Programming Properties” window, just leave the default settings and press the “OK” button.
iMPACT will first erase the memory (notice the mismatch between the two progress indicators) and then write it (notice the match between the two progress indicators).

After successful programming, you should read the message “Program Succeeded” popping up for a few seconds in the “Direct SPI Configuration” panel.

Switch S2 back to the “Run” position. In case you uploaded the test design, you should see the on-board led blinking at 0.5 Hz.

For further information about direct (pure SPI) in-system programming of SPI Flash memories, please see Xilinx Application Note XAPP951 "Configuring Xilinx FPGAs with SPI Serial Flash".

SPI Indirect In-System Programming (ISP)

Check the configuration switches against the following table:

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>on (left)</th>
<th>off (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2</td>
<td>Run</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>-</td>
<td>PON</td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Connect the host computer to the micro-module through both the SPI flying leads cable and the USB cable.

Start Xilinx ISE iMPACT. The following example shows the case of iMPACT 10.1. If the “iMPACT Project” window pops up, press the “Cancel” button.
Double click the “Boundary Scan” option in the “Modes” panel.

Right click the “Boundary Scan” to initialize the chain and select “Initialize Chain”.

An “Assign New Configuration File” dialog window should pop up automatically. You can now select the file corresponding to your design. In the following example, we will show how to select the micromodule reference design “blinking.bit” in the “TE0300” folder. Do not forget to select the “Enable Programming of SPI Flash Device Attached to this FPGA” option in the same window.

Select now the SPI Flash corresponding to the one present on the module (STMicroelectronics M25P32 in the example, a 32 Mbit (4M x 8) Serial Flash memory).
iMPACT should now look like this.

Right click the “Flash” device and select the “Program” operation.

In the “Device Programming Properties” window, just leave the default settings and press the “OK” button.

iMPACT will first erase the memory

and then write it.

After successful programming, you should read the message “Program Succeeded” popping up for a few seconds in the “Boundary Scan” panel.
Switch S3 back to the “FX PON” position. In case you uploaded the reference design, you should see the on-board led blinking at 0.5 Hz.

For further information about indirect (SPI over JTAG) in-system programming of SPI Flash memories, please see Xilinx Application Note XAPP974 "Indirect Programming of SPI Serial Flash PROMs with Spartan-3A FPGAs".

Changes from TE0300-00 to TE0300-01

Clocks
TE0300-00 has a 50MHz secondary clock, whereas TE0300-01 has a 125MHz secondary clock.

Volatile Memory Interface
TE0300-00 could access the DDR SDRAM only with Xilinx OPB (on-chip peripheral bus) cores.
TE0300-01 can also access the DDR SDRAM through the dedicated Xilinx MIG (memory interface generator) memory interface.

B2B Connectors
Contact 14 of connector J5 has been extended from an input in TE0300-00 to an I/O in TE0300-01. Therefore hardware designs developed for the TE0300-00 are compatible with the TE0300-01 whereas those developed for the TE0300-01 are compatible with the TE0300-00 if that contact is configured as input.

Contact 76 of connector J5 has mistakenly been described as I/O in TE0300-00, but it has always been an input-only contact as documented for TE0300-01.

Connector J4 has not been changed.

LED
With TE0300-00, the LED is lit when the U_LED line on pin T15 is set high whereas with TE0300-01 the LED is lit when the U_LED line on pin R10 is set high.

Ordering Information
For the latest product details and available options, please visit:

- www.trenz-electronic.de
- shop.trenz-electronic.de

Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Who</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2008-04-24</td>
<td>FDR</td>
<td>created</td>
</tr>
<tr>
<td>1.0</td>
<td>2008-08-01</td>
<td>FDR</td>
<td>completed</td>
</tr>
<tr>
<td>1.01</td>
<td>2008-08-08</td>
<td>TT</td>
<td>50MHz to 125MHz clock</td>
</tr>
<tr>
<td>1.02</td>
<td>2008-10-17</td>
<td>FDR</td>
<td>U_LED for TE0300-00</td>
</tr>
<tr>
<td>1.03</td>
<td>2008-10-17</td>
<td>FDR</td>
<td>updated FUT from 1.9 to 2.6</td>
</tr>
<tr>
<td>1.04</td>
<td>2008-10-27</td>
<td>FDR</td>
<td>DIP switches overview</td>
</tr>
<tr>
<td>1.05</td>
<td>2008-10-29</td>
<td>FDR</td>
<td>stacking height</td>
</tr>
</tbody>
</table>
Table 17: revision history.

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Who</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06</td>
<td>2008-12-08</td>
<td>FDR</td>
<td>DIP switches revised</td>
</tr>
<tr>
<td>1.07</td>
<td>2009-02-16</td>
<td>FDR</td>
<td>fixed DIP switches overview picture</td>
</tr>
<tr>
<td>1.08</td>
<td>2009-03-09</td>
<td>FDR</td>
<td>clarified warning regarding 3.3 V power-rail</td>
</tr>
<tr>
<td>1.09</td>
<td>2009-03-16</td>
<td>FDR</td>
<td>fixed and improved switch settings</td>
</tr>
<tr>
<td>1.10</td>
<td>2009-06-03</td>
<td>FDR</td>
<td>added "FWU File Generation" section</td>
</tr>
<tr>
<td>1.11</td>
<td>2009-07-23</td>
<td>FDR</td>
<td>clarified changes/LED section</td>
</tr>
<tr>
<td>1.12</td>
<td>2009-08-24</td>
<td>FDR</td>
<td>added FPGA signal details for main user signals</td>
</tr>
<tr>
<td>1.13</td>
<td>2009-09-01</td>
<td>FDR</td>
<td>improved "On-board Memories" chapter</td>
</tr>
<tr>
<td>1.14</td>
<td>2009-09-03</td>
<td>FDR</td>
<td>improved clock, memory and configuration chapters</td>
</tr>
<tr>
<td>1.14</td>
<td>2009-10-23</td>
<td>FDR</td>
<td>PREPARE_FW description removed</td>
</tr>
<tr>
<td>1.15</td>
<td>2010-05-14</td>
<td>FDR</td>
<td>Added reference design summaries.</td>
</tr>
<tr>
<td>1.16</td>
<td>2010-01-20</td>
<td>FDR</td>
<td>Fixed JTAG image.</td>
</tr>
<tr>
<td>1.17</td>
<td>2010-01-21</td>
<td>FDR</td>
<td>Fixed pin-out description for pin 57 (B0_L08_N). Add note on offset hole connectors.</td>
</tr>
<tr>
<td>1.18</td>
<td>2011-03-25</td>
<td>FDR</td>
<td>Updated Hirose connectors part numbers</td>
</tr>
</tbody>
</table>

Appendix

The following tables reports pin-out information of B2B (board-to-board) receptacle connectors J4 and J5 respectively.

The reference design summaries report the resources needed by the reference design on TE0300 modules of different dimensions (1200 and 1600 versions).
<table>
<thead>
<tr>
<th>pin</th>
<th>B2B name</th>
<th>FPGA pin</th>
<th>FPGA name</th>
<th>bank</th>
<th>dir</th>
<th>supply</th>
<th>di ff</th>
<th>supply</th>
<th>dir</th>
<th>bank</th>
<th>FPGA name</th>
<th>FPGA pin</th>
<th>B2B name</th>
<th>pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VccIO</td>
<td>-</td>
<td>VccO</td>
<td>0</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>0</td>
<td>VccO</td>
<td>VccIO</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>VccIO</td>
<td>-</td>
<td>VccO</td>
<td>0</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>0</td>
<td>VccO</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>B3_L01_P</td>
<td>C1</td>
<td>IO_L01P</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L07P</td>
<td>G6</td>
<td>B3_L07_P</td>
</tr>
<tr>
<td>7</td>
<td>B3_L01_N</td>
<td>C2</td>
<td>IO_L01N</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L07N</td>
<td>G5</td>
<td>B3_L07_N</td>
</tr>
<tr>
<td>9</td>
<td>B3_L02_P</td>
<td>D1</td>
<td>IO_L02P</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L03N</td>
<td>E1</td>
<td>B3_L03_N</td>
</tr>
<tr>
<td>11</td>
<td>B3_L02_N</td>
<td>D2</td>
<td>IO_L02N</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L03P</td>
<td>E2</td>
<td>B3_L03_P</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>B0_IO_C3</td>
<td>C3</td>
<td>IO_L25P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>N</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L19_P</td>
<td>F7</td>
<td>B0_L19_P</td>
</tr>
<tr>
<td>17</td>
<td>B0_L24_N</td>
<td>B4</td>
<td>IO_L24_N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L19N</td>
<td>E7</td>
<td>B0_L19_N</td>
</tr>
<tr>
<td>19</td>
<td>B0_L24_P</td>
<td>A4</td>
<td>IO_L24P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L21N</td>
<td>E6</td>
<td>B0_L21_N</td>
</tr>
<tr>
<td>21</td>
<td>B0_IO_C4</td>
<td>C4</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>N</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L21P</td>
<td>D6</td>
<td>B0_L21_P</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>B0_L23_N</td>
<td>D5</td>
<td>IO_L23N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L18N</td>
<td>D7</td>
<td>B0_L18_N</td>
</tr>
<tr>
<td>27</td>
<td>B0_L23_P</td>
<td>C5</td>
<td>IO_L23P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L18P</td>
<td>C7</td>
<td>B0_L18_P</td>
</tr>
<tr>
<td>29</td>
<td>B0_L20_P</td>
<td>B6</td>
<td>IO_L20P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L17N</td>
<td>F8</td>
<td>B0_L17_N</td>
</tr>
<tr>
<td>31</td>
<td>B0_L20_N</td>
<td>A6</td>
<td>IO_L20N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L17P</td>
<td>E8</td>
<td>B0_L17_P</td>
</tr>
<tr>
<td>33</td>
<td>3.3 V</td>
<td></td>
<td>3.3 V</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>B0_IO_A7</td>
<td>A7</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>N</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>A8</td>
<td>B0_IO_A8</td>
</tr>
<tr>
<td>37</td>
<td>B0_IO_G9</td>
<td>G9</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>N</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L14N</td>
<td>D9</td>
<td>GCLK_L14_N</td>
</tr>
<tr>
<td>39</td>
<td>GCLK_L13_P</td>
<td>B8</td>
<td>IP_L13P</td>
<td>/GCLK8</td>
<td>0</td>
<td>1</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L14P</td>
<td>C9</td>
</tr>
<tr>
<td>41</td>
<td>GCLK_L13_N</td>
<td>B9</td>
<td>IP_L13N</td>
<td>/GCLK9</td>
<td>0</td>
<td>1</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L11N</td>
<td>E10</td>
</tr>
<tr>
<td>43</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>GCLK_L12_P</td>
<td>B10</td>
<td>IO_L12P</td>
<td>/GCLK6</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GND</td>
</tr>
<tr>
<td>47</td>
<td>GCLK_L12_N</td>
<td>A10</td>
<td>IO_L12N</td>
<td>/GCLK7</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L09N</td>
<td>D11</td>
</tr>
<tr>
<td>49</td>
<td>B0_L15_P</td>
<td>E9</td>
<td>IO_L15P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L09P</td>
<td>C11</td>
<td>B0_L09_P</td>
</tr>
<tr>
<td>51</td>
<td>B0_L15_N</td>
<td>F9</td>
<td>IO_L15N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>A11</td>
<td>B0_IO_A11</td>
</tr>
<tr>
<td>53</td>
<td>2.5 V</td>
<td></td>
<td>2.5 V</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>B0_L08_P</td>
<td>E11</td>
<td>IO_L08P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_VREF</td>
<td>B11</td>
<td>B0_IO_B11</td>
</tr>
<tr>
<td>57</td>
<td>B0_L08_N</td>
<td>F11</td>
<td>IO_L08N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>A12</td>
<td>B0_IO_A12</td>
</tr>
<tr>
<td>59</td>
<td>B0_L05_P</td>
<td>A13</td>
<td>IO_L05P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L06P</td>
<td>F12</td>
<td>B0_L06_P</td>
</tr>
<tr>
<td>61</td>
<td>B0_L05_N</td>
<td>B13</td>
<td>IO_L05N</td>
<td>/VREF</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>Y</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO_L06N</td>
<td>E12</td>
</tr>
<tr>
<td>63</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>B0_L04_N</td>
<td>A14</td>
<td>IO_L04N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>D13</td>
<td>B0_IO_D13</td>
</tr>
<tr>
<td>67</td>
<td>B0_L04_P</td>
<td>B14</td>
<td>IO_L04P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>N</td>
<td>VccIO</td>
<td>IO</td>
<td>0</td>
<td>IO</td>
<td>E13</td>
<td>B0_IO_E13</td>
</tr>
<tr>
<td>69</td>
<td>B0_L03_N</td>
<td>C14</td>
<td>IO_L03N</td>
<td>/VREF</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>3.3 V</td>
<td>I</td>
<td>2</td>
<td>TDI</td>
<td>A2</td>
<td>TDI</td>
</tr>
<tr>
<td>71</td>
<td>B0_L03_P</td>
<td>D14</td>
<td>IO_L03P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>3.3 V</td>
<td>O</td>
<td>2</td>
<td>TDO</td>
<td>C16</td>
<td>TDO</td>
<td>72</td>
</tr>
<tr>
<td>73</td>
<td>1.2 V</td>
<td></td>
<td>1.2 V</td>
<td>74</td>
</tr>
<tr>
<td>75</td>
<td>B0_L01_N</td>
<td>A16</td>
<td>IO_L01N</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>3.3 V</td>
<td>I</td>
<td>2</td>
<td>TCK</td>
<td>A17</td>
<td>TCK</td>
<td>76</td>
</tr>
<tr>
<td>77</td>
<td>B0_L01_P</td>
<td>B16</td>
<td>IO_L01P</td>
<td>0</td>
<td>IO</td>
<td>VccIO</td>
<td>Y</td>
<td>3.3 V</td>
<td>I</td>
<td>2</td>
<td>TMS</td>
<td>D15</td>
<td>TMS</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>80</td>
</tr>
</tbody>
</table>

receptacle connector J4 pinout information
<table>
<thead>
<tr>
<th>pin</th>
<th>B2B name</th>
<th>FPGA pin</th>
<th>FPGA name</th>
<th>bank</th>
<th>dir</th>
<th>sup ply</th>
<th>df</th>
<th>ff</th>
<th>sup ply</th>
<th>dir</th>
<th>bank</th>
<th>FPGA name</th>
<th>FPGA pin</th>
<th>B2B name</th>
<th>pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5Vb2b</td>
<td>I</td>
<td>I</td>
<td>5Vb2b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5Vb2b</td>
<td>I</td>
<td>I</td>
<td>5Vb2b</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5V</td>
<td>O</td>
<td>I</td>
<td>/MR</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B2B_D_P</td>
<td>IO</td>
<td>Y</td>
<td>O</td>
<td>/RESET</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B2B_D_N</td>
<td>IO</td>
<td>Y</td>
<td>O</td>
<td>RESET</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>B3_L22_P</td>
<td>P3</td>
<td>IO_L22P</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L24P</td>
<td>T2</td>
<td>B3_IO_T2</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>B3_L22_N</td>
<td>P4</td>
<td>IO_L22N</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L21N</td>
<td>P1</td>
<td>B3_L21_N</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>B2_IP_V4</td>
<td>V4</td>
<td>IP_L02P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>N</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L21P</td>
<td>P2</td>
<td>B3_L21_P</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>B3_L20_P</td>
<td>N4</td>
<td>IO_L20P</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L23N</td>
<td>R2</td>
<td>B3_L23_N</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>B3_L20_N</td>
<td>N5</td>
<td>IO_L20N</td>
<td>3</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L23P</td>
<td>R3</td>
<td>B3_L23_P</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B2_L04_N</td>
<td>T5</td>
<td>IO_L04N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L18N</td>
<td>M3</td>
<td>B3_IO_L18N</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>B2_L04_P</td>
<td>R5</td>
<td>IO_L04P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L03P / DOUT / BUSY</td>
<td>U4</td>
<td>B2_IO_L03</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>B2_L05_P</td>
<td>R6</td>
<td>IO_L05P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO / VREF</td>
<td>U5</td>
<td>B2_IO_U5</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>B2_L05_N</td>
<td>P6</td>
<td>IO_L05N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L06P</td>
<td>V5</td>
<td>B2_L26_P</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>B2_IO_V7</td>
<td>V7</td>
<td>IO</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L06N / VREF</td>
<td>V6</td>
<td>B2_L26_N</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td></td>
<td>3.3 V</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>B2_L07_N</td>
<td>P7</td>
<td>IO_L07N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO / U6</td>
<td>U6</td>
<td>B2_IO_U6</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>B2_L07_P</td>
<td>N7</td>
<td>IO_L07P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L17N / VREF</td>
<td>L5</td>
<td>B3_L17_N</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>B2_GCLK12</td>
<td>M9</td>
<td>IO_L12N / D6 / GCLK12</td>
<td>2</td>
<td>I</td>
<td>3.3 V</td>
<td>N</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L17P / VREF</td>
<td>L6</td>
<td>B3_L17_P</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>GND</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>B2_L10_N</td>
<td>T8</td>
<td>IO_L10N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>1</td>
<td>IP_L08P / T7</td>
<td>U8</td>
<td>B2_IP_T7</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>B2_L10_P</td>
<td>R8</td>
<td>IO_L10P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>1</td>
<td>IP_L11P</td>
<td>U8</td>
<td>B2_IP_U8</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>B2_GCLK_L13_N</td>
<td>V9</td>
<td>IO_L13N / D3 / GCLK15</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L19P / M5</td>
<td>B3_L19_P</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>B2_GCLK_L13_P</td>
<td>U9</td>
<td>IO_L13P / D4 / GCLK14</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>3</td>
<td>IO_L19N / M6</td>
<td>B3_L19_N</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>2.5 V</td>
<td>2.5 V</td>
<td></td>
<td>2.5 V</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>B2_L18_N</td>
<td>N11</td>
<td>IO_L18N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L09P</td>
<td>P8</td>
<td>B2_L09_P</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>B2_L18_P</td>
<td>P11</td>
<td>IO_L18P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L09N</td>
<td>N8</td>
<td>B2_L09_N</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>B2_L20_N</td>
<td>R12</td>
<td>IO_L20N</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO / P9</td>
<td>P9</td>
<td>B2_IO_P9</td>
<td>60</td>
</tr>
<tr>
<td>63</td>
<td>GND</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>B2_L19_N</td>
<td>V13</td>
<td>IO_L19N / VREF</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L15N / D1 / GCLK3</td>
<td>P10</td>
<td>B2_IO_P10</td>
<td>66</td>
</tr>
<tr>
<td>67</td>
<td>B2_L19_P</td>
<td>V12</td>
<td>IO_L19P</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO / D5</td>
<td>R9</td>
<td>B2_IO_R9</td>
<td>68</td>
</tr>
<tr>
<td>69</td>
<td>B2_L22_N</td>
<td>R13</td>
<td>IO_L22N / A22</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L21N / P12</td>
<td>B2_L21_N</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>B2_L22_P</td>
<td>P13</td>
<td>IO_L22P / A23</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>Y</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO_L21P / N12</td>
<td>B2_L21_P</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1.2 V</td>
<td>1.2 V</td>
<td></td>
<td>1.2 V</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>B2_L24_P</td>
<td>T14</td>
<td>IO_L24P / A21</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>1</td>
<td>IP_L23P / V14</td>
<td>B2_IP_V14</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>B2_L24_N</td>
<td>R14</td>
<td>IO_L24N / A20</td>
<td>2</td>
<td>IO</td>
<td>3.3 V</td>
<td>Y</td>
<td>N</td>
<td>3.3 V</td>
<td>IO</td>
<td>2</td>
<td>IO / U13</td>
<td>U13</td>
<td>B2_IO_U13</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>GND</td>
<td>GND</td>
<td></td>
<td>GND</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

receptacle connector J5 pinout information
Reference Design Summary: Xilinx Spartan-3E 1200

platgen -p xc3s1200efg320-4 -lang vhdl -lp x:/xxx/ system.mhs
Release 11.5 - platgen Xilinx EDK 11.5 Build EDK_LS5.70 (nt)
Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved.

Command Line: platgen -p xc3s1200efg320-4 -lang vhdl -lp

Running post-placement packing...

Design Summary:
Number of errors: 0
Number of warnings: 16

Logic Utilization:
Number of Slice Flip Flops: 5,885 out of 17,344 33%
Number of 4 input LUTs: 8,041 out of 17,344 46%

Logic Distribution:
Number of occupied Slices: 6,622 out of 8,672 76%
 Number of Slices containing only related logic: 6,622 out of 6,622 100%
 Number of Slices containing unrelated logic: 0 out of 6,622 0%
*See NOTES below for an explanation of the effects of unrelated logic.

Total Number of 4 input LUTs: 8,424 out of 17,344 48%
 Number used as logic: 6,066
 Number used as a route-thru: 383
 Number used for Dual Port RAMs: 1,812
 (Two LUTs used per Dual Port RAM)
 Number used as Shift registers: 163

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

Number of bonded IOBs: 74 out of 250 29%
 IOB Flip Flops: 36
 IOB Master Pads: 1
 IOB Slave Pads: 1
Number of ODDR2s used: 22
 Number of DDR_ALIGNMENT = NONE 22
 Number of DDR_ALIGNMENT = C0 0
 Number of DDR_ALIGNMENT = C1 0
Number of RAMB16s: 25 out of 28 89%
Number of BUFGMUXs: 5 out of 24 20%
Number of DCMs: 1 out of 8 12%
Number of BSCANS: 1 out of 1 100%
Number of MULT18X18SIOs: 3 out of 28 10%

Number of RPM macros: 2
Average Fanout of Non-Clock Nets: 3.57
Initializing temperature to 85.000 Celsius. (default - Range: -40.000 to 100.000 Celsius)
Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.320 Volts)

Device speed data version: "PRODUCTION 1.27 2010-02-13".

Design Summary Report:

Number of External IOBs 74 out of 250 29%
Number of External Input IOBs 10
 Number of External Input IBUFs 10
 Number of LOCed External Input IBUFs 10 out of 10 100%
Number of External Output IOBs 36
 Number of External Output DIFFMs 1
 Number of LOCed External Output DIFFMs 1 out of 1 100%
 Number of External Output DIFFSs 1
 Number of LOCed External Output DIFFSs 1 out of 1 100%
 Number of External Output IOBs 34
 Number of LOCed External Output IOBs 34 out of 34 100%
Number of External Bidir IOBs 28
 Number of LOCed External Bidir IOBs 28 out of 28 100%

Number of BSCANS 1 out of 1 100%
Number of BUFGMUXs 5 out of 24 20%
Number of DCMs 1 out of 8 12%
Number of MULT18X18SIOs 3 out of 28 10%
Number of RAMB16s 25 out of 28 89%
Number of Slices 6622 out of 8672 76%
 Number of SLICEMs 1088 out of 4336 25%
Number of LOCed Slices 65 out of 6622 1%
 Number of LOCed SLICEMs 43 out of 1088 3%

Overall effort level (-ol): High
Router effort level (-rl): High
Reference Design Summary: Xilinx Spartan-3E 1600

platgen -p xc3s1600efg320-4 -lang vhdl -lp x:/xxx/ system.mhs

Release 11.5 - platgen Xilinx EDK 11.5 Build EDK_LS5.70 (nt)
Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved.

Command Line: platgen -p xc3s1600efg320-4 -lang vhdl

Running post-placement packing...

Design Summary:
- **Number of errors:** 0
- **Number of warnings:** 16

Logic Utilization:
- **Number of Slice Flip Flops:** 5,885 out of 29,504 (19%)
- **Number of 4 input LUTs:** 8,038 out of 29,504 (27%)

Logic Distribution:
- **Number of occupied Slices:** 6,424 out of 14,752 (43%)
- **Number of Slices containing only related logic:** 6,424 out of 29,504 (100%)
- **Number of Slices containing unrelated logic:** 0 out of 6,424 (0%)

See NOTES below for an explanation of the effects of unrelated logic.

- **Total Number of 4 input LUTs:** 8,421 out of 29,504 (28%)
 - **Number used as logic:** 6,063
 - **Number used as a route-thru:** 383
 - **Number used for Dual Port RAMs:** 1,812
 (Two LUTs used per Dual Port RAM)
 - **Number used as Shift registers:** 163

The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

- **Number of bonded IOBs:** 74 out of 250 (29%)
 - **IOB Flip Flops:** 36
 - **IOB Master Pads:** 1
 - **IOB Slave Pads:** 1
- **Number of ODDR2s used:** 22
 - **Number of DDR_ALIGNMENT = NONE:** 22
 - **Number of DDR_ALIGNMENT = C0:** 0
 - **Number of DDR_ALIGNMENT = C1:** 0
- **Number of RAMB16s:** 25 out of 36 (69%)
- **Number of BUFGMUXs:** 5 out of 24 (20%)
- **Number of DCMs:** 1 out of 8 (12%)
- **Number of BSCANs:** 1 out of 1 (100%)
- **Number of MULT18X18SIOs:** 3 out of 36 (8%)

- **Number of RPM macros:** 1
- **Average Fanout of Non-Clock Nets:** 3.57
Initializing temperature to 85.000 Celsius. (default - Range: -40.000 to 100.000 Celsius) Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.320 Volts)

Device speed data version: "PRODUCTION 1.27 2010-02-13".

Design Summary Report:

Number of External IOBs 74 out of 250 29%
Number of External Input IOBs 10
 Number of External Input IBUFs 10
 Number of LOCed External Input IBUFs 10 out of 10 100%
Number of External Output IOBs 36
 Number of External Output DIFFMs 1
 Number of LOCed External Output DIFFMs 1 out of 1 100%
 Number of External Output DIFFSs 1
 Number of LOCed External Output DIFFSs 1 out of 1 100%
Number of External Output IOBs 34
 Number of LOCed External Output IOBs 34 out of 34 100%
Number of External Bidir IOBs 28
 Number of LOCed External Bidir IOBs 28 out of 28 100%
Number of BSCANS 1 out of 1 100%
Number of BUFMUXs 5 out of 24 20%
Number of DCMs 1 out of 8 12%
Number of MULT18X18SIOs 3 out of 36 8%
Number of RAMB16s 25 out of 36 69%
Number of Slices 6424 out of 14752 43%
 Number of SLICEMs 1090 out of 7376 14%
Number of LOCed Slices 65 out of 6424 1%
 Number of LOCed SLICEMs 43 out of 1090 3%

Overall effort level (-ol): High
Router effort level (-rl): High
