C++ TE_USB_FX2 API

reference manual
General Index

A 1o o [T (o o 4
1.1 API FUNCtions (FirSt API Set).......uuuiieiiii e e e 4
1.1.1 SyNChronous FUNCLIONS...........oiiiiiiii s 4
1.1.2 TIiMEOUL SEHING....ooiiiiiiiieeeeeeeeeeeeeeeeee e 5
1.1.3 BufferSize (also called XferSize)......oouiiiiiiiiiiiee e 5

L I = 1] (=Y 65] = Y 6
1.2 MicroBlaze APl Commands (Second APl Set)........ccoooiiiiiiiiiiiieeeei 6
A =0 U1 =T 0 01T oL PP 7
O T d I LU T3 (] T 8
3.1 TE_USB_FX2_SCaNCardS().....uvueeeeeeeeeeeiaiaurieirieeeaeesaasasseeeeeeeeeseesasassnsseeeseseesessssnnes 10
0 T I I I T3 =T = 1 () o 10
3.1.2 FUNCHON Call.....neeeeeeeeee ettt e e e e e e e e e e e 10
3.1.3 DESCIIPLION. ... e 10
314 Par@metersS. ... oot aans 10
T IR ST ==Y (U] =1 11T 10
3.2 TE_USB _FX2 OPEN()..uttuutuuuriieiiiiiiieisesrsssssessssssssssssssssssssssssssssssssssseesesssnneaeeeen 11
G T2t I I 1= o3 = = (o] o 11
I U [o To: 1 To] o 1N 0= | SR 11
3.2.3 DESCIIPLION. ... e e e e nrnas 11
3.2.4 Para@metersS........ oo 11
3.2.5 REIUIMN VAIUEB... ..ot e e e e e e e e e e eans 11
3.3 TE_USB _FX2 ClIOSE()...uuuuuuuuuuuuuiunuii e 13
0 T Tt IR I 1Y o3 == 1 (] o 13
3.3.2 FUNCHON CaAll......oeeeeeeeeeeeee et e e e e e e e e e 13
3.3.3 DESCIIPLION. ... e 13
3.3.4 Para@metersS....... oo 13
3.3.5 REIUIMN VAIUEB......cceeeeee et e e e e e e e e eas 13
3.4 TE_USB_FX2_SendCommand()........cceeeuuummmmmieeeeeeeiiiiiieeeeee e e e e ssnneneeeeeeeeeeesnnnnnnnnns 14
G T I I 1= o3 = = () o 14
3.4.2 FUNCHON CaAll......ooeeeeeeeeeeee et e e e e e e e e e e e e e e 14
3.4.3 DESCIIPLON. ... e 14
3. 4.4 ParametersS....... oo e 14
T ST ==Y (U] =1 11 1= 15
3.5 TE_USB_FX2_GetData_InstanceDriverBuffer()..........ccccocooveeeiiiiiiiieeeeeeee 16
IO TN W0t IR I 1Y o3 == (] o 16
3.5.2 FUNCHON CaAll......oeeeeeeeeeeee et e e e e e e e e e e e 16
3.5.3 DESCIIPLION. ... e 16
3.5.4 ParametersS. ... oo 17
3.5.5 REIUIMN VAIUEB......cce et e e e e e e e eas 18
3.6 TE_USB _FX2 GetData()......ceveeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt e e e e et e e e aaaeees 19
IO T o Tt I I 1Y o3 = = () o 19
3.6.2 FUNCHON Call......coeeeeeeeeeeee et e e e e e e e e e e 19
3.6.3 DESCIIPLION. ... e 19
3.6.4 Expected Data Throughput.............coooiiiiiiiiiiiiiiiiieeeeeee e 19
3.6.5 DataRead Size Shall Not Be TOO Large........ccccooeeiiiiiiiieiiei i 19

3.6.6 DataRead Size Shall Not Be Too Small.......coouoieniioeieeeee e, 19

I S I A o= 1= 101121 (<) £ T UT TSP RRRRRTRPR 20

3.6.8 Return Value.............ooo 20
3.7 TE_USB_FX2_SetData_InstanceDriverBuffer()...........cccccovvuemmmemimmnieiiiinn. 21
At B B =T =1 =1 1o o USSP 21
3.7.2 FUNCHON Call......oiiieeeeee et e e e 21
3.7.3 DESCIIPLION. ... e 21
.74 Par@meters.....ouuece it 22
3.7.5 Return ValUue...........ooo 23
3.8 TE_USB_FX2_SetData().....ceeeeeeeiiiiiiiieiiieee ettt e e e e e e e 24
K< Tt B I =T =1 =1 (o o PRSP 24
3.8.2 FUNCHON Call......ooieeeeeee et e e 24
3.8.3 DESCIIPLION. ... e 24
3.8.4 Expected Data Throughput............cooeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeese e 24
3.8.5 DataWrite Shall Not Be TOO Large.........c.uueevieeeeiiiiiiiiiiiiie e 24
3.8.6 DataWrite Shall Not Be Too Small...........coooovmiiiiiiiiiiiicceeee e 24

K T A o= 1 =10 0= (=] TP 25
3.8.8 RetUMN VAlUE.......c.ccooeeeee et 25
N e O] .41 1 4= T o SR P 26
v I o) 1 {0 To [U [[o VOSSR 26
4.1.1 Reference ArchiteCture.............oooviiii i 26
4.1.2 CuStom LOGIC BIOCK.......cciiiiiiiiiiiiiiiieee et 26
4.2 USB FX2 APl COMMANGS......ccueiiiiiiiiee e et e e e e e e e e e e s snnnaeeeeeaaeeanaeeeeas 30
4.2.1 READ _VERSION.ottt 30
4.2.2 INITIALIZE.ottt e e e e e e e e e e st eeaeaeaeeeaaaeees 30
4.2.3 READ ST ATUS .. e e e e e e e e e e e e e aaaaaaas 30
s Y | 31
4.2.5 FLASH _READottt e e e e e e e e e e e e e aaaaaas 31
4.2.6 FLASH _WRITE. ... ettt es 31
4.2.7 FLASH _ERASE....... oot e e 32
4.2.8 EEPROM _READ..... ..ottt e e e e e e e e e e e e e e e e e e aaaaaaaes 32
4.2.9 EEPROM_WRITE.. ..ottt 32
4.2.10 FIFO _STATUSttt e e e e e e e s e e e e e e e e e e s eeeeeeeeeees 33
4211 12C WRITE.... oottt e e e e e e e e e e e e e e e e s b e e eeeeees 33
O U A O o= Y D 34
4.2.13 POWER. ... e 34
4.2.14 FLASH_WRITE_COMMAND.......ccii ittt 34
4.2.15 SET INTERRUPTot e e e e e e e e e e e e e e e 35
4.2.16 GET _INTERRUPT ...ttt e e e 35
4.3 MicroBlaze APl COMMANGAS........uciiiiiiiieeeeeceee et e e e e e eaans 36
4.3.1 FX22MB_REGO _NOP.... ..t e e e e e e e e e e aeees 36
4.3.2 FX22MB_REGO_GETVERSION. ..ottt 37

v G T2t B @7 To [N oy o o TP 37
4.3.2.2 TabIE FOIM.. ..ottt e e e e e e e aa e eees 37
4.3.3 FX22MB_REGO_START _TX.eetiiiiiiieiiiiiiieiiiie et e e e 39
4.3.3.1 Combination 1 (simplified Version)...........ccccuueeiiiiiiiiiiiiiieeee s 39
4.3.3.2 Combination 2 (simplified Version)...........ccccoueiiiieeiiiiiiiieeee e 40
4.3.4 FX22MB_REGO_START _RX .ottt 41
4.3.4.1 Combination 1 (simplified Version)...........ccccouuieeiieeiiiiiiiiee e 42
4.3.4.2 Combination 2 (simplified Version)...........ccccuueeiiiiiiiiiiiiiiiiieeeee e 43
4.3.5 FX22MB_REGO_STOP......oeeiiiiieiiiiiiieieee ettt e e a e e e e e e e e e e aaaaaes 44
4.3.6 FX22MB_REGO _PING......oottiiiiiiee it a e 45

5 APl usage example PrOgramM........ccoooieieiiiiiiee e ee e e e e e e e e e et s e e e e e e e e ees e e eaaeeeeenn 46

5.1 First Example: select module, read firmware version, read VID/PID....................... 46

5.2 Second Example: Read TESt.........uuuuuiiiiiiiiiiiiiiiiiiie e e e e e e eeeeens 48
5.3 Third Example: WIEE TeSt........uueiiiiiiiieiieiiiiiiiiiee ettt aeseaeneensennnrannnn s 48

6 TE_USB_FX2_CyAPLdll:

Data Transfer Throughput Optimization...............cccoo e, 49
6.1 INtrOdUCHION.o 49
6.2 XferSize (driver buffer size) INflUENCE..........oooii i 49
6.3 PacketSize (transfer data size) Influence ... 50
8.4 CONCIUSION. ... 50
6.5 APPENdiX : ChartS.......coooiiiiiiieeeeeeeeeeeeee e 51

7 Appendix A : Open the Visual Studio 2010 Project.........cccceiimiiiiee e e e e eeeeene 52

8 Appendix B : use of pdb file (symbolic debugging)..........cccooeeiiiiiiiiiiiiiii 54

9 Document Change HiSTOrY.........ooi i 55

O =1 o] [T T =T o o PP 55

1 Introduction

This document describes the API supported by standard Trenz Electronic FPGA modules
equipped with Cypress EZ-USB FX2 microcontroller (currently: TE0300, TE0320 and
TE0630).

This document describes two different sets of API:
1. TE_USB_FX2_CyAPI.dll
2. APl commands

C++ applications use directly TE_USB_FX2_ CyAPILdll based on CyAPLlib. To avoid
copying back and forth large amount of data between these two DLLs, data is passed by
reference and not by value.

Hardware/Firmware Software
FPGA-MicroBlaze Sample application (C++)
(response to some APl commands) (the programmer shall know
Defined in MB_Commands how to use APl commands)

TE_USB_FX2_CyAPIL.dll (C++)
(API commands are inserted here in the
FPGA to USB_FX2 communication commands data array of byte)

CyAPL.lib (C++)
(Cypress C++ DLL)

USB_FX2 Firmware
(able to execute APl commands and
send binary code responses)
Defined in FX2_Commands

TE_USB_FX2_xx.sys
(derivative of CyUSB.sys:
Cypress EZ-USB FX2 driver derivate)

Driver Buffer
(size determined by BufferSize parameter)
(APl commands are
a set of byte in the buffer)

USB Cable and Tx/Rx Circuits

Endpoint USB FX2 Buffer
(API commands are
a set of byte in the buffer)

Hardware, firmware and software stack.

1.1 API Functions (First API Set)

The first set of API is a set of DLL functions mainly used to communicate between the host
computer and the EZ-USB FX2 microcontroller endpoints; this API uses the Cypress C++
CyAPLlIib as a basis. In fact, one API function (namely TE USB FX2 SendCommand()) is able to
communicate with the MicroBlaze implemented on the FPGA.

These API functions have some parameters to set: Timeout, BufferSize and others.

1.1.1 Synchronous Functions

These functions use a synchronous version for the data transfer (Cypress XferData()). They perform
synchronous (i.e. blocking) I/O operations and do not return until the transaction completes or the
endpoint TimeOut has elapsed. A synchronous operation (aka blocking operation) is an
operation that owns (in an exclusive way) resources and CPU until its job is done. A
synchronous function monopolizes resources until its end, even during idle time.

If the program uses the synchronous XferData() function (both in C# with
TE_USB_FX2_CyUSB.dIl and C++ with TE_USB_FX2_CyAPLdll), the array of data to
transfer is the only one that is subdivided into packets (with packet length < MaxPktSize =
512 byte) and scheduled over the USB buffer for data transmission. Until the data array is
completely transferred, no other data array can be scheduled into packets over the USB, even if
there is free packet time to be used by other data. The array of data passed to the XferData()
function is the only owner of the USB bus until all data of this array are transferred (successfully or
unsuccessfully). While using XferData() method, the OS will schedule the next XferData() only
after the previous XferData() completes, leading to delay.

XferData() just calls asynchronous functions BeginDataXfer(), WaitForXfer() and
FinishDataXfer() in sequence and does error handling accordingly. WaitForXfer() is the one
which implements the timeout period for larger transfers. Cypress recommends the following: “You
will usually want to use the synchronous XferData method rather than the asynchronous
BeginDataXfer / WaitForXfer / FinishDataXfer approach.”.

The API uses the synchronous version because it is more suitable to be included in a DLL and it is
already fast. With synchronous version, the API functions are simpler to use.

1.1.2 Timeout Setting

Timeout is the time that is allowed to the function for sending/receiving the data packet passed to
the function; this timeout shall be large enough to allow the data/command transmission/reception.
Otherwise the transmission/reception will fail.

TimeOut shall be set according to the following formula:
TimeOut (ms) = [DatalLength / DataThroughput] + 1 ms.
Note: TimeOut is integer so you shall round up the result.

For write transactions, assume DataThroughput ~ 20 Mbyte/s (it is lower than actual value, give
some margin).

For read transactions, assume DataThroughput = 30 Mbyte/s (it is lower than actual value, give
some margin).

For SendCommand() assume DataThroughput =~ 1 Mbyte/s (close to actual value).

These values have been verified for a Core 17 processor at 2.20 GHz with Microsoft Windows 7.
Other configuration may require others value. An AMD Athlon II at 1.30 GHz with Microsoft
Windows 7 might require much (e.g. two or three times) larger values. If your host computer is not
highly responsive, you should set TimeOut to even larger values : e.g 20, 50, 200, 1000 ms (the less
responsive the host computer is, the higher the recommended values shall be).

1.1.3 BufferSize (also called XferSize)

BufferSize is the size of the buffer used in data/command transmission/reception of a single
endpoint; the total buffer size is the sum of BufferSize of every endpoint used. See section 6
TE USB FX2 CyAPILdll: Data Transfer Throughput Optimization for some insights into this kind
of influence

BufferSize has a strong influence on DataThroughput. If BufferSize is too small, the
DataThroughput can be 1/3 to 1/2 of the maximum value (36 Mbyte/s for read and 25 Mbyte/s for
write transactions). If the BufferSize has a large value (a roomy buffer), the application should be
able to cope with the non-deterministic behavior of C# without losing packets.

1.1.4 PacketSize

PacketSize is the size of packets used in data/command transmission/reception of a single endpoint.
See section 6 TE USB FX2 CyAPILdll: Data Transfer Throughput Optimization for further
insights on this influence.

PacketSize has also a strong influence on DataThroughput. If PacketSize is too small (512 byte for
example) you can achieve very low data throughput (2.2 Mbyte/s) even if you use a large
BufterSize (driver buffer size = 131,072 byte).

1.2 MicroBlaze API Commands (Second API Set)

The second set of API is APl commands. They are binary data that are sent/received by
the EZ-USB FX2 microcontroller. API commands provide an easy way to create a
communication interface with Trenz Electronic FPGA modules.

APl commands are sent using a function of the first API set: TE USB_FX2 SendCommand().
This function is able to pass the API commands (of the second API set) to the MicroBlaze
embedded processor and receive the response binary code of using endpoint EP1.

A combination of TE USB FX2 SendCommand() and TE USB FX2 GetData() functions is able
to read data from FPGA RAM.

A combination of TE USB FX2 SendCommand() and TE USB FX2 SetData() functions is able
to write data to FPGA RAM.

2 Requirements

When using TE_USB_FX2_CyAPI.dll API, a host computer should meet the following
requirements:

* Operating system: Microsoft Windows 2000, Microsoft Windows XP, Microsoft Windows
Vista, Microsoft Windows 7

* USB driver: Trenz Electronic USB FX2 driver
* Interface: USB 2.0 host
e (C++ Run Time: it is contained in
© Microsoft Visual C++ 2010 x64 Redistributable Setup: veredist x64.exe for 64 bit.

o Microsoft Visual C++ 2010 x86 Redistributable Setup: veredist x86.exe for 32 bit
See your module user manual for dedicated driver installation instructions.

3 API Functions

In order to provide a user interface for driver functions, dynamic link library
TE USB FX2 CyAPILdll and CyAPLlib have been used.

The API for 32 and 64 bit operating systems are located in two different folders:

TE-USB-
Suite/TE_USB _FX2 CyAPI SampleApplication/TE USB FX2 CyAPI SampleApplicatio
n/DLL32/

TE-USB-
Suite/TE_USB_FX2 CyAPI SampleApplication/TE USB FX2 CyAPI SampleApplicatio
n/DLL64/

These folders come from the folder FileToExportForApplication in the project folder TE-USB-
Suite/TE_USB FX2 CyAPI/.

FileToExportForApplication/ contains TE_ USB FX2 CyAPILh, CyAPLh and two folders; DLL32/
and DLL64/. DLL32/ and DLL64/ folders contain files with the same name but compiled
respectively for 32 or 64 bit operating systems.

You shall select 32 or 64 bit for the compilation. To do this you shall:

1.

U

6.

in “Explore Solution” panel (top right window), right click the second line (between
“Solution” and “External Dependencies”)

select “Properties”

left click "Configuration Management" (top right)
in "Active Solution Platform", select Win32 or x64
click “Close”

click “OK”

To create a program, you shall copy these files to the project folder.

User programs should load these libraries and initialize module connection to get access to API
functions. To do this, you shall:

1.

copy TE_USB_FX2_CyAPl.h, TE_USB_FX2_CyAPl.dll, TE_USB_FX2_CyAPl.lib,
CyAPIl.h and CyAPLl.lib to the project folder (for example

TE-USB-
Suite/TE_USB_FX2_CyAPI|_SampleApplication/TE_USB_FX2_CyAPI_SampleApp
lication/);

open the C++ project (double click the TE USB_FX2 CyAPI SampleApplication icon in
the folder
TE-USB-Suite/TE_USB _FX2 CyAPI SampleApplication/);

open "Explore Solution" if it is not already open (Ctrl +W or left click "Visualize>Explore
Solution");

in the right panel "Explore Solution", right click "Header File";
select Add. A new window (Add Header File) opens;

the term "Look In" shall have automatically selected the correct folder

(TE-USB-

Suite/TE_ USB_FX2 CyAPI SampleApplication/TE USB FX2 CyAPI SampleApplicati
on/).

10.
I1.
12.

13.

14.
15.

If it is not so, you shall select the folder where you have copied the previous DLLs and
header files;

left click one of the two header files (CyAPLh or TE USB_FX2 CyAPLh);
select OK;

repeat steps from 4 to 8 for the second header file;

in the right panel "Explore Solution", right click "Resource File";

select Add. A new window (Add Resource File) opens;

the term "Look In" shall have automatically selected the correct folder

(TE-USB-

Suite/TE_USB FX2 CyAPI SampleApplication/TE USB FX2 CyAPI SampleApplicati
on/).

If is not so, you shall select the folder where you have copied the previous DLLs and header
files;

left click one of the three DLL files (TE_USB FX2 CyAPILdll, TE USB FX2 CyAPLlib
or CyAPLlib);

Note
To compile the project it is strictly necessary only TE_ USB_FX2 CyAPI.dIl, the two lib
files are optional.

select OK;

repeat steps from 10 to 14 for the second and third DLL file (if you want add the *.1ib file
also).

Exported function list:

TE_USB_FX2_ScanCards()
TE_USB_FX2_Open()

TE_USB_FX2_Close()
TE_USB_FX2_SendCommand()
TE_USB_FX2_GetData_InstanceDriverBuffer()
TE_USB_FX2_GetData()
TE_USB_FX2_SetData_InstanceDriverBuffer()
TE_USB_FX2_SetData()

3.1 TE_USB_FX2_ScanCards()

3.1.1 Declaration

TE _USB_FX2 CYAPI int TE USB FX2 ScanCards (
CCyUSBDevice *USBDevicelist)

3.1.2 Function Call
Your application program shall call this function like this:
TE USB_FX2 ScanCards(USBDeviceList);

3.1.3 Description

This function takes an already initialized USB device list (USBDeviceList), searches for Trenz
Electronic USB FX2 devices (Cypress driver derivative and VID = 0xbd0, PID=0x0300) and counts
them.

This function returns the number of Trenz Electronic USB FX2 devices attached to the
USB bus of the host computer.

3.1.4 Parameters
1. CCyUSBDevice *USBDeviceList

CCyUSBDevice is a type defined in CyAPLlib. Its name is misleading because it is
not a class that represents a single USB device, but it rather represents a list of
USB devices.

CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a derivative like
TE USB_FX2 xx.sys). This parameter is passed by pointer. See page 7 and pages 23-49 of
CyAPILpdf (Cypress CyAPI Programmer's Reference).

3.1.5 Return Value
1. int: integer type.

This function returns the number of USB devices attached to the host computer USB bus.

3.2 TE_USB_FX2_Open()

3.2.1 Declaration

TE _USB_FX2 CYAPI int TE USB FX2 Open (
CCyUSBDevice *USBDevicelist, int CardNumber)

3.2.2 Function Call
Your application program shall call this function like this:
TE USB_FX2 Open(USBDeviceList, CardNumber);

3.2.3 Description

This function takes an already initialized USB device list, searches for Trenz Electronic USB FX2
devices (Cypress driver derivative and VID = 0xbd0, PID=0x0300) and counts them.
If no device is attached, USBDeviceList is not initialized to null (the device list is not erased). An
internal operation that closes an handle to the CyUSB.sys driver (or a derivative like
TE USB FX2 xx.sys) is executed instead (see page 33 of CyAPI.pdf).
If one or more devices are attached and
* if 0 < CardNumber < (number of attached devices — 1), then
the selected module is not directly given by USBDeviceList (CCyUSBDevice type). An
internal operation that opens a handle to CyUSB.sys driver (or a derivative like
TE USB_FX2 xx.sys) is executed instead (see page 45 of CyAPLpdf). This handle is
internally managed by CyAPIL.lib, therefore there is no need to expose them to the user.
e if CardNumber > number of attached devices, then
USBDeviceList (CyUSBDevice type) is not initialized to null (the device list is not erased).
An internal operation that closes an handle to CyUSB.sys driver (or a derivative like
TE USB_FX2 xx.sys) is executed instead (see page 33 of CyAPLpdf).
A more intuitive name for this function would have been TE_USB FX2 SelectCard().
You can use this function to select the card desired without the need to call Close before.

3.2.4 Parameters
1. CCyUSBDevice *USBDeviceList

CCyUSBDevice is a type defined in CyAPLlib. Its name is misleading because it is not a
class that represents a single USB device, but it rather represents a list of USB devices.

CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a derivative like
TE USB_FX2 xx.sys). This parameter is passed by pointer. See page 7 and pages 23-49 of
CyAPILpdf (Cypress CyAPI Programmer's Reference).

2. int CardNumber.
This is the number of the selected Trenz Electronic USB FX2 device.

3.2.5 Return Value
1. int: integer type

This function returns true (ST OK=0) if it is able to find the module selected by
CardNumber. If unable to do so, it returns false (ST _ERROR=1).

enum ST Status

{

ST OK = 0,
ST ERROR = 1
}s

3.3 TE_USB_FX2_Close()

3.3.1 Declaration
TE USB_FX2 CYAPI int TE USB_FX2 Close (CCyUSBDevice *USBDevicelist)

3.3.2 Function Call
Your application program shall call this function like this:
TE USB FX2 Close(USBDeviceList);

3.3.3 Description

This function takes an already initialized USB device list, searches for Trenz Electronic USB FX2
devices (any Cypress driver derivative and VID = 0xbd0, PID=0x0300) and opens (and
immediately after closes) the first device found.

The selected module is not directly given by USBDeviceList (CCyUSBDevice type). An internal
operation that opens and immediately after closes an handle to CyUSB.sys driver (or a derivative
like TE_ USB FX2 xx.sys) is executed instead (see page 45 of CyAPIpdf). The open method
closes every other handle already opened, and close method closes the only handle open; in this
way, all handles are closed. These handles are internally managed by CyAPIL.lib and there is no need
to expose them to the user.

Note. After the execution of this function, no internal handle is open.

This function does not differ much from from its homonym of the previous TEO300DLL.dll; the
only difference is that this function closes a handle (like TEO300DLL.dll) to the driver but the
handle is not exposed to user (unlike TEO300DLL.dlI).

3.3.4 Parameters
1. CCyUSBDevice *USBDeviceList

CCyUSBDevice is a type defined in CyAPL.lib. Its name is misleading because it is
not a class that represents a single USB device, but it rather represents a list of
USB devices. CCyUSBDevice is the list of devices served by the CyUSB.sys driver
(or a derivative like TE_USB_FX2_xx.sys). This parameter is passed by pointer. See
page 7 and pages 23-49 of CyAPI.pdf (Cypress CyAPI Programmer's Reference).

2. int CardNumber.
This is the number of the selected Trenz Electronic USB FX2 device.

3.3.5 Return Value
1. int: integer type

This function returns true (ST OK=0) if it is able to find the module selected by
CardNumber. If unable to do so, it returns false (ST _ERROR=1).

enum ST Status
{
ST OK = O,
ST ERROR = 1
}:

3.4 TE_USB_FX2_SendCommand()

3.4.1 Declaration

TE _USB_FX2 CYAPI int TE USB FX2 SendCommand (
CCyUSBDevice *USBDevicelist, byte* Command, long CmdLength,
byte* Reply, long ReplylLength, unsigned long Timeout)

3.4.2 Function Call
Your application program shall call this function like this:

TE USB FX2 SendCommand(
USBDeviceList, Command, CmdLength, Reply, ReplyLength, Timeout);

3.4.3 Description

This function takes an already initialized USB device list (USBDeviceList previously selected by
TE USB_FX2 Open()) and sends a command (API command) to the USB FX2 microcontroller
(USB FX2 API command) or to the MicroBlaze embedded processor (MicroBlaze API command)
through the USB FX2 microcontroller endpoint EP1 buffer.

This function is normally used to send 64 bytes packets to the USB endpoint EP1 (0x01).

This function is also able to obtain the response of the USB FX2 microcontroller or MicroBlaze
embedded processor through the USB FX2 microcontroller endpoint EP1 (0x81).

3.4.4 Parameters
1. CCyUSBDevice *USBDeviceList

CCyUSBDevice is a type defined in CyAPLlib. Its name is misleading because it is not a
class that represents a single USB device, but it rather represents a list of USB devices.
CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a
derivative like TE_USB_FX2_xx.sys). This parameter is passed by pointer. See
page 7 and pages 23-49 of CyAPI.pdf (Cypress CyAPI| Programmer's Reference).

2. byte* Command

This parameter is passed by pointer. It is the pointer to the byte array that contains the
commands to send to USB FX2 microcontroller (FX2 Commands) or to MicroBlaze
(MB_Commands).

The byte array shall be properly initialized using instructions similar to the following ones:

Command[0] = I2C WRITE;
Command[1l] = MB I2C ADRESS;
Command[2] = I2C BYTES;
Command[3] = 0;

Command[4] = 0;

Command([5] = 0;

Command[6] = Command2MB;

3. long CmdLength

This parameter is the length (in bytes) of the previous byte array; it is the length of the
packet to transmit to USB FX2 controller endpoint EP1 (0x01). It is typically initialized to
64 bytes.

4. byte* Reply

This parameter (passed by pointer) is the pointer to the byte array that contains the response

to the command sent to the USB FX2 microcontroller (FX2 Commands) or to the
MicroBlaze embedded processor (MB_Commands).

long ReplyLength.

This parameter is the length (in bytes) of the previous byte array; it is the length of the
packet to transmit to the USB FX2 microcontroller endpoint EP1 (0x81). It is typically
initialized to 64 byes, but normally the meaningful bytes are less.

unsigned long Timeout.

The unsigned integer value is the time in milliseconds assigned to the synchronous method
XferData() of data transfer used by CyAPLlib.

TimeOut is the time that is allowed to the function for sending/receiving the data packet
passed to the function; this timeout shall be large enough to allow the data/command
transmission/reception. Otherwise the transmission/reception will fail. See 1.1.2 Timeout
Setting.

3.4.5 Return Value

1.

int : integer type

This function returns true (ST _OK=0) if it is able to send a command to EP1 and receive a
response within 2*Timeout milliseconds. This function returns false (ST ERROR=1)
otherwise.

enum ST Status
{
ST OK = O,
ST ERROR = 1
}i

3.5 TE_USB_FX2_GetData_InstanceDriverBuffer()

3.5.1 Declaration

TE USB FX2 CYAPI int TE USB FX2 GetData InstanceDriverBuffer (
CCyUSBDevice *USBDevicelist, CCyBulkEndPoint **BulkInEP,
PI PipeNumber PipeNo,unsigned long Timeout, int BufferSize)

3.5.2 Function Call

Your application program shall call this function like this:

TE USB FX2 GetData InstanceDriverBuffer
(USBDeviceList, &BulkInEP, PipeNo, TimeOut, BufferSize);

3.5.3 Description

This function takes an already initialized USB device list (USBDeviceList previously selected by
TE USB_FX2 Open()) and a not initialized CCyBulkEndPoint double pointer, BulkInEP. This
function selects the endpoint to use: you shall choose EP6 (0x86) (endpoints EP4(0x84) or
EP2(0x82) are also theoretically possible).

Currently (April 2012), only endpoint 0x86 is actually implemented in Trenz Electronic USB FPGA
modules, so that endpoints EP2 and EP4 cannot be read or , more precisely, they are not even
connected to the FPGA. That is why attempting to read them causes a function failure after Timeout
expires.

TE USB FX2 GetData InstanceDriverBuffer() function instantiates the class used by CyAPI to
use bulk endpoint (CCyBulkEndPoint, see pages 9 to 11 of CyAPILpdf (Cypress CyAPI
Programmer's Reference)) and initializes the parameters of this class instantiation. The parameters
are :

1. Timeout
2. XMODE DIRECT (this parameter set the driver to single buffering, instead the slower
double buffering)

3. DeviceDriverBufferSize.
The last parameter force the instantiation of the driver buffer (SW side, on the host computer) for
the endpoint 0x86; this buffer has a size in byte given by DeviceDriverBufferSize. This value is of
great importance because the data throughput is strongly influenced by this parameter (see section 6
TE USB FX2 CyAPLdll: Data Transfer Throughput Optimization).

This function has not been included in TE_USB_FX2_GetData() for throughput reasons; if
the driver buffer instantiation were repeated at every data reception, the data throughput
would be halved. This function shall be used only one time to instantiate the driver buffer;
after instantiation, TE_USB_FX2_GetData() can be used repeatedly without re-
instantiating the driver buffer.

int RX PACKET LEN = 51200;//102400;

int packetlen = RX PACKET LEN;

unsigned int packets = 500;//1200;//1200;

unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;
unsigned long TIMEOUT= 18;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;
unsigned int errors = 0;

data = new byte [RX PACKET LEN*packets]; //allocate memory
PI PipeNumber PipeNo = PI EP6;

//starts test
SendFPGAcommand (USBDeviceList, FX22MB REGO START TX) ;

CCyBulkEndPoint *BulkInEP = NULL;

TE USB FX2 GetData InstanceDriverBuffer (USBDevicelist,
&BulkInEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);

ElapsedTime.Start(); //StopWatch start
for (unsigned int i = 0; i < packets; i++)
{
packetlen = TX PACKET LEN;
data temp = &data[total cnt];
if (TE USB FX2 GetData (&BulkInEP, data temp, packetlen))
{
cout << "ERROR read" << endl;
errors++;
break;
}
total cnt += packetlen;
}
//DEBUG StopWatch
TheElapsedTime = ElapsedTime.Stop (false);

SendFPGAcommand (USBDevicelist, FX22MB REGO STOP) ;

3.5.4 Parameters
1. CCyUSBDevice *USBDevicelList

CCyUSBDevice is a type defined in CyAPLlib. Its name is misleading because it is not a
class that represents a single USB device, but it rather represents a list of USB devices.
CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a derivative like
TE USB _FX2 xx.sys). This parameter is passed by pointer. See page 7 and pages 23-49 of
CyAPILpdf (Cypress CyAPI Programmer's Reference).

2. CCyBulkEndPoint **BulkInEP
This parameter is a double pointer to CCyBulkEndPoint. This parameter is used to pass the
used BulkEndPoint parameter to TE USB FX2 GetData(). The double pointer is used
because, if single pointer were used, the data modification of
TE USB_FX2 GetDatalnstanceDriverBuffer() could not be passed over to
TE USB FX2 GetData.()

3. PI PipeNumber PipeNo
This parameter is the value that identifies the endpoint used for data transfer. It is called
PipeNumber because it identifies the buffer (pipe) used by the USB FX2 microcontroller.

4. unsigned long Timeout

It is the integer time value in milliseconds assigned to the synchronous method XferData()
of data transfer used by CyAPLlib. Timeout is the time that is allowed to to the function for
sending/receiving the data packet passed to the function; this timeout shall be large enough
to allow data/command transmission/reception.Otherwise the transmission/reception will
fail. See 1.1.2 Timeout Setting.

5. int BufferSize
It 1s the dimension (in bytes) of the driver buffer (SW) used in data reception of a single
endpoints (EP6 0x86 in this case); the total buffer size is the sum of BufferSize of every
endpoint used. BufferSize has a strong influence on DataThroughput. If BufferSize is too
small, DataThroughput can be 1/3-1/2 of the maximum value (from a maximum value of 36
Mbyte/s for read transactions to an actual value of 18 Mbyte/s). See 6
TE USB FX2 CyAPLdll: Data Transfer Throughput Optimization.

3.5.5 Return Value
1. int: integer type

This function returns true (ST _OK=0) if the selected BulkEndPoint exists in the firmware.
This function returns false (ST _ERROR=1) otherwise.

enum ST Status
{
ST OK = O,
ST ERROR = 1
}:

3.6 TE_USB_FX2_GetData()

3.6.1 Declaration

TE USB FX2 CYAPI int TE USB FX2 GetData (
CCyBulkEndPoint **BulkInEP, byte* DataRead, long DataReadLength)

3.6.2 Function Call
Your application program shall call this function like this:
TE USB_FX2 GetData(&BulkInEP, DataRead, DataReadLength);

3.6.3 Description

This function takes an already initialized CCyBulkEndPoint double pointer. The device has
been previously selected by TE_USB_FX2_ Open(). TE_USB_FX2_GetData() reads data
from the USB FX2 microcontroller endpoint EP6 (0x86) and transfers this data to the host
computer. This data is generated by the FPGA.

3.6.4 Expected Data Throughput

The maximum data throughput expected (with a DataReadLength= 120*1076) is 37 Mbyte/s
(PacketSize = BufferSize = 131,072), but in fact this value is variable between 31-36 Mbyte/s (the
mean value seems 33.5 Mbyte/s); so if you measure this range of values, the data reception can be
considered as normal.

The data throughput is variable in two ways:
1. depends on the used host computer;

2. varies with every function call.

3.6.5 DataRead Size Shall Not Be Too Large

TE USB_FX2 GetData() seems unable to use too large arrays or, more precisely, this fact seems
variable by changing host computer. To be safe, do not try to transfer in a single packet very large
data (e.g. 120 millions of byte); transfer the same data with many packets instead (1,200 packets *
100,000 byte) and copy the data in a single large data array if necessary.

3.6.6 DataRead Size Shall Not Be Too Small

There are two reasons why DataRead size shall not be too small.

The first reason is described in section 1.1.4 PacketSize. PacketSize has also a strong influence on
DataThroughput. If PacketSize is too small (e.g. 512 byte), you can have very low DataThroughput
(2.2 Mbyte/s) even if you use a large driver buffer (driver buffer size = 131,072 bytes). See section
6 TE USB FX2 CyAPILdll: Data Transfer Throughput Optimization.

The second reason is that probably the FPGA imposes your minimum packet size. In a properly
used read test mode (using FX22MB REGO START TX and therefore attaching the FPGA),
TE USB_FX2 GetData() is unable to read less than 1024 byte. In a improperly used read test mode
(not using FX22MB REGO START TX and therefore detaching the FPGA),
TE USB FX2 GetData() is able to read a packet size down to 64 byte. The same CyAPI method
XferData() used (under the hood) in TE USB _FX2 SendCommand() is able to read a packet size
of 64 byte. These facts prove that the minimum packet size is imposed by FPGA. To be safe, we

recommend to use this function with a size multiple of 1 kbyte.

3.6.7 Parameters

1.

CCyBulkEndPoint **BulkInEP

This parameter is used to pass to TE USB FX2 GetData() the parameter of BulkEndPoint
used. This parameter is a double pointer to CCyBulkEndPoint. The double pointer is used
because if single pointer is used the data modification of
TE USB FX2 GetDatalnstanceDriverBuffer() cannot be passed to
TE USB FX2 GetData().

. byte* DataRead

C++ applications use directly TE_ USB FX2 CyAPI.dll based on CyAPL.lib. This parameter
is passed by pointer to avoid copying back and forth large amount of data between these two
DLLs. This parameter points the byte array that, after the function return, will contain the
data read from the buffer EP6 of USB FX2 microcontroller. The data contained in EP6 is
generated by the FPGA. If no data is contained in EP6, the byte array is left unchanged.

long DataReadLength

This parameter is the length (in bytes) of the previous parameter.

3.6.8 Return Value

1.

int: integer type

This function returns true (ST _OK = 0) if it is able to receive the data from buffer EP6
within Timeout milliseconds. This function returns false (ST _ERROR = 1) otherwise.

enum ST Status
{
ST OK = O,
ST ERROR = 1
}s

3.7 TE_USB_FX2_SetData_InstanceDriverBuffer()

3.7.1 Declaration

TE USB FX2 CYAPI int TE USB FX2 SetData InstanceDriverBuffer (
CCyUSBDevice *USBDevicelList, CCyBulkEndPoint **BulkOutEP,
PI PipeNumber PipeNo,unsigned long Timeout, int BufferSize)

3.7.2 Function Call

Your application program shall call this function like this:

TE USB FX2 SetData InstanceDriverBuffer (
USBDeviceList, &BulkOutEP, PipeNo, Timeout, BufferSize);

3.7.3 Description

This function takes an already initialized USB device list (USBDevice previously selected by

TE USB_FX2 Open()) and a not initialized CCyBulkEndPoint double pointer, BulkOutEP. This
function selects the endpoint to use: you shall choose EP8 (0x08) (endpoints EP4(0x04) or
EP2(0x02) are also theoretically possible).

Currently (April 2012), only endpoint 0x08 is actually implemented in Trenz Electronic USB FPGA
modules, so that endpoints EP2 and EP4 cannot be written or , more precisely, they are not even
connected to the FPGA. That is why attempting to write them causes a function failure after
Timeout expires.

TE USB FX2 SetData InstanceDriverBuffer() function instantiates the class used by CyAPI to
use Bulk EndPoint (CCyBulkEndPoint, see pages 9 to 11) and initializes the parameters of this class
instantiation. The parameters are :

1. Timeout
2. XMODE DIRECT (this parameter set the driver to single buffering, instead the slower
double buffering)

3. DeviceDriverBufferSize.
The last parameter force the instantiation of the driver buffer (SW side, on the host computer) for
the endpoint 0x86; this buffer has a size in byte given by DeviceDriverBufferSize. This value is of
great importance because the data throughput is strongly influenced by this parameter (see section 6
TE USB FX2 CyAPLdll: Data Transfer Throughput Optimization).

This function has not been included in TE USB FX2 SetData() for throughput reasons; if the
driver buffer instantiation were repeated at every data reception, the data throughput would be
halved. This function shall be used only one time to instantiate the driver buffer; after instantiation,
TE USB FX2 SetData() can be used repeatedly without re-instantiating the driver buffer.

int TX PACKET LEN = 51200;//102400;

int packetlen = TX PACKET LEN;

unsigned int packets = 500;//1200;//1200;

unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;
unsigned long TIMEOUT= 18;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;

unsigned int errors = 0;

data = new byte [TX PACKET LEN*packets]; //allocate memory
PI PipeNumber PipeNo = PI EPS8;

//starts test
SendFPGAcommand (USBDeviceList, FX22MB REGO START RX);

CCyBulkEndPoint *BulkOutEP = NULL;

TE USB FX2 SetData InstanceDriverBuffer (USBDevicelist,
&BulkOutEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);

ElapsedTime.Start (); //StopWatch start
for (unsigned int i = 0; i < packets; i++)
{
packetlen = TX PACKET LEN;
data temp = &data[total cnt];
//cout << "Address &BulkInEP" << &BulkInEP << endl;
//cout << "Address BulkInEP" << BulkInEP << endl;
//cout << "Address *BulkInEP" << (*BulkInEP) << endl;
if (TE USB FX2 SetData (&BulkOutEP, data temp, packetlen))
{
cout << "ERROR read" << endl;
errors++;
break;

}

total cnt += packetlen;

}

//DEBUG StopWatch
TheElapsedTime = ElapsedTime.Stop (false);

SendFPGAcommand (USBDeviceList, FX22MB REGO STOP) ;

3.7.4 Parameters

1.

4.

CCyUSBDevice *USBDevicelList

CCyUSBDevice is a type defined in CyUSB.dIL. Its name is misleading because it is not a
class that represents a single USB device, but it rather represents a list of USB devices.
CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a derivative like
TE USB_FX2 xx.sys). This parameter is passed by pointer. See page 7 and pages 23-49 of
CyAPLpdf (Cypress CyAPI Programmer's Reference).

CCyBulkEndPoint **BulkOutEP

This parameter is a double pointer to CCyBulkEndPoint. This parameter is used to pass the
used BulkEndPoint parameter to TE USB FX2 SetData(). The double pointer is used
because, if single pointer were used, the data modification of
TE USB FX2 SetDatalnstanceDriverBuffer() could not be passed over to
TE USB FX2 SetData.()

PI_PipeNumber PipeNo
This parameter is the value that identifies the endpoint used for data transfer. It is called
PipeNumber because it identifies the buffer (pipe) used by the USB FX2 microcontroller.

unsigned long Timeout

It is the integer time value in milliseconds assigned to the synchronous method XferData()
of data transfer used by CyAPLlib. TimeOut is the time that is allowed to to the function for
sending/receiving the data packet passed to the function; this Timeout shall be large enough
to allow data/command transmission/reception.Otherwise the transmission/reception will
fail. See 1.1.2 Timeout Setting.

5. int BufferSize
Itis the dimension (in bytes) of the driver buffer (SW) used in data transmission of a single
endpoints (EP8 0x08 in this case); the total buffer size is the sum of BufferSize of every
endpoint used. BufferSize has a strong influence on DataThroughput. If BufferSize is too
small, DataThroughput can be 1/3-1/2 of the maximum value (from a maximum value of 24
Mbyte/s for read transactions to an actual value of 18 Mbyte/s). See 6
TE USB FX2 CyAPLdll: Data Transfer Throughput Optimization.

3.7.5 Return Value
1. int: integer type

This function returns true (ST _OK=0) if the selected BulkEndPoint exists in the firmware.
This function returns false (ST _ERROR=1) otherwise.

enum ST Status
{
ST OK = O,
ST ERROR = 1
}:

3.8 TE_USB_FX2_SetData()

3.8.1 Declaration

TE_USB_FX2 CYAPI int TE USB FX2 SetData (
CCyBulkEndPoint **BulkOutEP, byte* DataWrite, long
DataWriteLength)

3.8.2 Function Call

Your application program shall call this function like this:
TE USB FX2 SetData (&BulkOutEP, DataWrite ,DataWriteLength);

3.8.3 Description

This function takes an already initialized CCyBulkEndPoint double pointer. The device has been
previously selected by TE USB_FX2 Open(). TE_USB_FX2_SetData() reads data from the
host computer and writes them to the USB FX2 microcontroller endpoint EP8 (0x08). This
data is then passed over to the FPGA.

If there is not a proper connection (not using FX22MB REGO START RX) between FPGA and
USB FX2 microcontroller, the function can experience a strange behavior. For example, a very low
throughput (9-10 Mbyte/s even if a 22-24 Mbyte/s are expected) is measured or the function fails
returning false. These happen because buffer EP8 (the HW buffer, not the SW buffer of the driver
whose size is given by BufferSize parameter) is already full (it is not properly read/emptied by the
FPGA) and no longer able to receive further packets.

3.8.4 Expected Data Throughput

The maximum data throughput expected (with a DataWriteLength= 120*1076) is 24 Mbyte/s
(PacketSize = BufferSize =131,072) but in fact this value is variable between 22-24 Mbyte/s (the
mean value seems 24 Mbyte/s); so if you measure this range of values, the data reception can be
considered as normal.

The data throughput is variable in two ways:

1. depends on the used host computer (on some host computers this value is even higher: 29
Mbyte/s)

2. varies with every function call.

3.8.5 DataWrite Shall Not Be Too Large

TE USB_FX2 SetData() seems unable to use too large arrays or, more precisely, this fact seems
variable by changing host computer. To be safe, do not try to transfer in a single packet very large
data (e.g. 120 millions of byte); transfer the same data with many packets instead (1,200 packets *
100,000 byte) and copy the data in a single large data array if necessary.

3.8.6 DataWrite Shall Not Be Too Small

The reason is described in section 1.1.4 PacketSize. PacketSize has also a strong influence on
DataThroughput. If PacketSize is too small (e.g. 512 byte), you can have very low DataThroughput
(2.2 Mbyte/s) even if you use a large driver buffer (driver buffer size = 131,072 bytes). See section
6 TE USB _FX2 CyAPILdll: Data Transfer Throughput Optimization.

3.8.7 Parameters

1.

CCyBulkEndPoint **BulkOutEP

This parameter is used to pass to TE_ USB_FX2 SetData() the parameter of BulkEndPoint
used. This parameter is a double pointer to CcyBulkEndPoint. The double pointer is used
because if single pointer is used the data modification of

TE USB_FX2 SetDatalnstanceDriverBuffer() cannot be passed to

TE USB FX2 SetData().

. byte* DataWrite

C++ applications use directly TE USB_FX2 CyAPI.dll based on CyAPLlib. This parameter
is passed by pointer to avoid copying back and forth large amount of data between these two
DLLs. This parameter points the byte array that, after the function return, will contain the
data written into buffer EP8 of USB FX2 microcontroller. The data contained in EP8 is
generated by the host computer.

long DataWriteLength

This parameter is the length (in bytes) of the previous parameter.

3.8.8 Return Value

1.

int : integer type

This function returns true (ST _OK = 0) if it is able to write the data to buffer EP8 within
Timeout milliseconds. This function returns false (ST _ERROR = 1) otherwise.

enum ST Status
{
ST OK = O,
ST ERROR = 1
}:

4 API Commands

4.1 Introduction

This introduction has been taken from "TE03xx Series Application Notes".

4.1.1 Reference Architecture

The Xilinx FPGA itself on the Trenz Electronic USB FX2 family by default is blank and has
no architecture. To define an FPGA functionality, a logic architecture should be defined and
loaded into the device. The reference design system was built using Xilinx Embedded
Development Kit (EDK). Basically, it is an embedded system with a MicroBlaze 32-bit soft
microprocessor. The MicroBlaze initializes and sets up the system. The XPS_12C_SLAVE
block sends commands coming from the USB bus towards the MicroBlaze processor (low
speed communication channel). The horsepower for high bandwidth data streaming is a
Multiport Memory Controller (MPMC). A custom-built DMA (direct memory access) engine
(XPS_NPI_DMA) streams data between multiple sources and external RAM
simultaneously. Standard EDK cores are used to implement a serial interface
(XPS_UARTLITE), an SPI FLASH interface (XPS_SPI), a timer / counter block
(XPS_TIMER) and an interrupt controller (XPS_INTC).

When data is sent from the USB-host to the USB FX2 family high-speed endpoint (high
speed communication channel), it is automatically stored into the RAM by the DMA at a
specified buffer location. The reference design software running on the MicroBlaze verifies
the transferred data at the end of transmission and sends to the USB host a notification
about the data test (pass/fail).

When data is sent form the Trenz Electronic USB FX2 family high-speed endpoint to the
USB host, it is automatically fetched from the RAM via the DMA engine and forwarded to
the XPS_FX2 core in 1-kbyte packets. MicroBlaze does the throttling to prevent XPS_FX2
TX FIFO overflow.

4.1.2 Custom Logic Block

The instructions contained in this document can be applied to all reference designs. Besides
standard IP cores, they contain three custom IP cores:

1. XPS NPI DMA
2. XPS FX2
3. XPS_I2C_SLAVE

XPS_NPI_DMA is a high speed DMA (direct memory access) engine which connects to
the MPMC (Multi-Port Memory Controller) VFBC (Video Frame Buffer Controller) port. It
enables high speed data streaming to/from external memory (DDR SDRAM). It can be
controlled by a processor using 6 x 32-bit memory mapped registers attached to the PLB
(peripheral local bus). For more information about registers, see the Xilinx MPMC Product
Specification (mpmc.pdf), "Video Frame Buffer Controller PIM" section .

XPS_FX2 is a logic block for high speed bidirectional communication between the FPGA
and a host PC. It contains two 2 kB FIFOs for data buffering. For more information about
the 5 x 32-bit memory mapped registers see the
#project_root#/pcores/xps_fx2_v1_00_a/doc.

XPS_I2C_SLAVE is a logic block for low speed bidirectional communication between the

FPGA and a host PC. It is usually used for command, settings and status communication.
It contains 6 x 32-bit memory mapped registers:

* 3 for PC -> FPGA communication (FX2MB regs)

* 3 for FPGA -> PC communication (MB2FX2 regs)
When the PC sends commands to the MicroBlaze (MB) soft embedded processor, an
interrupt is triggered. When the MB writes data to MB2FX2_reg0, the interrupt (INTO) is
sent to the Cypress EZ-USB FX2LP USB microcontroller. When the FX2 microcontroller
receives an interrupt, it reads all MB2FX2 regs.

4

; N\
{ : 3

— ’
b3
< 2 3 E Xc i
X = % PIM
[. = [
E: MicroBlaze | |- T
%3 3 3 DDR SDRAM DOR
3 3 Y XCL : -
a3 a 3 MM i momary 1227 e
PE DL) [T controller
— ; [NPI i
PIM
\ J
3
XP5_UARTLITE e
o XPS_NPI_DMA
N—
\ y
) =
4
]
XPS_TIMER p o 1
L
——— g_ XPS_FX2 s-w_‘ FX2 USB
) .
XPS_INTC 3 (\
\ | |A_] xps_i2c_sLAVE
= 't — S
SPI
ILASH XPS_SPI

(-

FPGAFABRE;/

custom core (]

The commands described in Table 1 are binary data packets sent/received by the USB FX2
microcontroller through endpoint 1. Endpoint 1 accepts 64 byte packets with a predefined structure.
These command are sent using the API function TE_USB _FX2 SendCommand().

ID Name Description
0x00 |READ_ VERSION Return 4 bytes representing FX2 firmware version
0xAO |INITIALIZE Initialize FX2 to initial state
0xAl |READ STATUS Return 5 bytes of FX2 status
0xA4 |RESET FIFO Reset selected FX2 FIFO
0xA5 |FLASH READ Read data from SPI Flash
0xA6 |FLASH WRITE Write data to SPI Flash
0xA7 |FLASH ERASE Erase entire SPI Flash
0xA8 |EEPROM_READ Read data from 12C EEPROM
0xA9 |EEPROM_WRITE Write data from [2C EEPROM
0xAC |FIFO STATUS Return FIFO status for all endpoints
0xAD |12C_WRITE Write data to 12C interface
0xAE |I2C_ READ Read data from I2C interface
0xAF |[POWER Control FPGA power supply
0xAA |FLASH WRITE COMMAND | Write SPI Flash command
0xBO |SET INTERRUPT Set parameters for interrupt handler
0xB1 |GET _INTERRUPT Return interrupt statistic information

Table 1: USB FX2 APl command list (commands accepted by the USB FX2
microcontroller firmware).

There are also some MicroBlaze commands that can be customized by users. Table 2 lists and
describes briefly the default MicroBlaze commands accepted by the default MicroBlaze embedded
processor implemented in Trenz Electronic USB FX2 FPGA modules.

ID Name Description

0x0 FX22MB_REGO_NOP No operation

0

0x0 | FX22MB_REGO0_GETVERSIO Return 4 bytes representing
1 N FPGA firmware version

0x0 | FX22MB_REGO_START_TX Start read data integrity test of data

2 transmitted from EP6 of FX2 to computer.

0x0 | FX22MB_REGO_START_RX Start write data integrity test of data transmitted
3 from computer to EP8 of FX2

0x0 FX22MB_REGO_STOP Stop both the test started by 0x02 and 0x03
4

0x0 FX22MB_REGO_PING This command send a ping request. A “pong”
5 0x706F6E67 value shall be returned.

Table 2: MicroBlaze APl commands list.

Table 3 lists some important parameters used in FX2 API commands, in case they are required by a

MicroBlaze command.

ID Name Description
0x0C 12C_ BYTES Number of bytes (12)
0x3F MB I2C _ADRESS | Address of MicroBlaze over 12C

Table 3: USB FX2 API parameter list.

When writing applications, users shall include, typically at the beginning of their programs, code
sections similar to the three following ones:

enum FX2 Commands

{
READ VERSION = 0x00,
INITALIZE = O0xAO,
READ STATUS = OxAl,
WRITE REGISTER = 0xA2,
READ REGISTER = 0xA3,
RESET FIFO STATUS = OxA4,
FLASH READ = OxA5,
FLASH WRITE = 0OxAo,
FLASH ERASE 0xA7,
EEPROM READ 0xAS8,
EEPROM WRITE = 0xA9,
GET FIFO STATUS = OxAC,
I2C WRITE = OxAD,
IZC_READ = 0OxAE,
POWER ON = O0OxAF,
FLASH WRITE COMMAND = OxAA,
SET INTERRUPT = 0xBO,
GET INTERRUPT = 0xBI1,

};

enum FX2 Parameters
{

I2C BYTES = 0x0C,

MB I2C ADDRESS = 0x3F
}i

enum MB Commands

{
FX22MB REGO NOP = O,
FX22MB REGO GETVERSION
FX22MB REGO START TX =
FX22MB REGO START RX =
FX22MB_REGO_STOP
FX22MB REGO PING

b

w Nl
~ ~

4,
5

The byte array shall be properly initialized by using instructions similar to the following ones:

Command[0] = I2C WRITE;
Command([1] MB I2C ADRESS;
Command[2] = I2C BYTES;

Command([3] = 0;
Command[4] = 0;
Command[5] = 0;
Command[6] = Command2MB;

4.2 USB FX2 APl Commands
The first byte sent by TE_ USB_FX2 SendCommand() is the USB FX2 API Command.

4.2.1 READ_VERSION

This command returns 4 bytes representing the USB FX2 firmware version.

Byte Value Description
1 0x00 READ_VERSION command ID
From 2 to 64 - Not used
Table 4: READ VERSION Command Packet Layout.

Byte Description

FX2 Firmware version major number

FX2 Firmware version minor number

Device Major Number

AW N~

Device Minor Number

From 5 to 64 Not Used

Table 5: READ_VERSION Reply Packet Layout.

4.2.2 INITIALIZE

This command runs the USB FX2 initialization process.

Byte Value Description
1 0xA0 INITIALIZE command ID
2 0x01 FIFO mode
From 3 to 64 - Not used

Table 6: INITIALIZE Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.3 READ_STATUS
This command returns 5 bytes representing the USB FX2 status.

Byte Value Description

1 0xA1 READ_STATUS command ID

From 2 to 64 - Not used

Table 7: READ _STATUS Command Packet Layout.

Byte Description
FIFO error
Current mode

Flash busy
FPGA program
Booting

From 6 to 64 Not used

Table 8: READ_STATUS Reply Packet Layout.

AW IN| -

4.2.4 RESET_FIFO

This command resets the FIFO of the selected endpoint (all endpoints if zero is selected).

Byte Value Description
1 0xA4 RESET_FIFO command ID
2 0/2/4/6/8 Endpoint number
0 means all endpoints, not control endpoint.
From 3 to 64 - Not used

Table 9: READ_VERSION Command Packet Layout.

Reply packet doesn't contain any usable information.

425 FLASH_READ
This command reads data (from 1 to 64 bytes) from the requested SPI Flash address.

Byte Value Description
1 O0xAS FLASH_READ command ID
2 Sector Flash sector to read (address [23:16])
3 AddrHigh High part of address (address [15:8])
4 AddrLow Low part of address (address [7:0])
5 size Number of bytes to read (max 64)
From 6 to 64 - Not used

Table 10: FLASH_READ Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.6 FLASH_WRITE

This command writes data (from 1 to 59 bytes) to the requested SPI Flash address. Afterwards, it
writes USB FX2 firmware, reads back data from Flash and returns it in a reply packet.

Byte Value Description
1 OxA6 FLASH_WRITE command ID
2 Sector Flash sector to read (address [23:16])
3 AddrHigh High part of address (address [15:8])
4 AddrLow Low part of address (address [7:0])
5 size Number of bytes to read (max 59)
From 6 to size+5 data Data to write (size bytes)
From size+6 to 64 |- Not used

Table 11: FLASH_WRITE Command Packet Layout.

Byte Description
From 1 to size Readback result
From size to 64 Not used

Table 12: FLASH_WRITE Reply Packet Layout.

4.2.7 FLASH_ERASE

This command starts an entire Flash erase process. A full Flash erase process may take up to 30
seconds for M25PS32 SPI Flash chip (check your SPI Flash data sheet for actual time values). To
control Flash busy status, use READ STATUS command.

Byte Value Description
1 OxA7 FLASH _ERASE command ID

From 2 to 64 - Not used
Table 13: FLASH_ERASE Command Packet Layout

Reply packet doesn't contain any usable information.

4.2.8 EEPROM_READ
This command reads data (from 1 to 64 bytes) from requested EEPROM address.

Byte Value Description
1 OxA8 EEPROM_READ command ID
2 AddrHigh High part of address (address [15:8])
3 AddrLow Low part of address (address [7:0])
4 size Number of bytes to read (max 64)
From 5 to 64 - Not used

Table 14: EEPROM_READ Command Packet Layout.
Reply packet contains requested data.

4.2.9 EEPROM_WRITE

This command writes data (from 1 to 60 bytes) to the requested EEPROM address. Afterwards, it
writes USB FX2 firmware, reads back data from EEPROM and returns it in a reply packet.

Byte Value Description
1 0xA9 EEPROM_WRITE command ID
2 AddrHigh High part of address (address [15:8])
3 AddrLow Low part of address (address [7:0])
4 size Number of bytes to write (max 60)
From 5 to size+4 data Data to write (size bytes)

From size+5 to 64

Not used

Table 15: EEPROM_WRITE Command Packet Layout.

Byte

Description

From 1 to size

Readback result

From size to 64

Not used

Table 16: EEPROM_WRITE Reply Packet Layout.

4.2.10 FIFO_STATUS

This command returns the FIFO status of all used endpoints. Status is the value of EP2CS, EP4CS,
EP6CS and EP8CS USB FX2 registers. See USB FX2 documentation for detailed information.

Byte Value Description
1 OxAC FIFO_STATUS command ID
From 2 to 64 - Not used
Table 17: FIFO_STATUS Command Packet Layout.
Byte Description
1 FX2 EP2CS Register value
2 FX2 EP4CS Register value
3 FX2 EPG6CS Register value
4 FX2 EP8CS Register value
From 5 to 64 Not used

Table 18: FIFO_STAUS Reply Packet Layout.

4.2.11

I2C_WRITE

This command writes data (from 1 to 32 bytes) to the requested [2C address.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 Address |I2C Address
MB_I2C_ADRESS=0x3F
3 size Number of bytes to write (max 32)
From 4 to size+3 data Data to write (size bytes)
From size+4 to 64 |- Not used

Table 19: 12C_WRITE Command Packet Layout.

Reply packet doesn't contain any usable information.

4212 12C_READ
This command reads data (from 1 to 32 bytes) from requested 12C address.

Byte Value Description
1 OxAE I2C_READ command ID
2 Address I2C Address
3 size Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 20: EEPROM_WRITE Command Packet Layout.

Reply packet contains requested data.

4213 POWER
This command controls some FPGA power supply sources.
Byte Value Description
1 OxAF POWER command ID
2 power 0 = Power OFF state, 1 = Power ON state
From 3 to 64 - Not used
Table 21: POWER Command Packet Layout.
Byte Description
1 0 = Power OFF state, 1 = Power ON state
From 2 to 64 Not used

Table 22: POWER Reply Packet Layout.

4214 FLASH_WRITE_COMMAND
This command sends instruction to the SPI Flash. See SPI Flash data sheet for detailed command

description.

Byte Value Description
1 OxAA FLASH_WRITE_COMMAND command ID
2 Write length Write command length
3 Read length Read command length
From 4 to write command Write command
length +3

From write length+4
to 64

Table 23: FLASH_WRITE_COMMAND Command Packet Layout.

Not used

Byte

Description

From 1 to read
length

SPI Data Out sequence

From read length
+1to 64

Not used

Table 24: FLASH_WRITE_COMMAND Reply Packet Layout.

4.2.15 SET_INTERRUPT

This command sets address and number of bytes to read from 12C bus when interrupt request is

received.
Byte Value Description
1 0xBO SET_INTERRUPT command ID
2 Address |I2C Address
MB_12C_ADRESS=0x3F
3 size Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 25: SET_INTERRUPT Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.16 GET_INTERRUPT

This command pulls the number of received interrupts and received data (number of bytes set by
SET INTERRUPT command) from the USB FX2.

Byte

Value

Description

1

0xB1

GET_INTERRUPT command ID

From 2 to 64

Not used

Table 26: GET_INTERRUPT Command Packet Layout.

Byte

Description

1 Interrupt number

been serviced.

If zero means that GET_INTERRUPT has not been able to retry
data because the interrupt created by SET_INTERRUPT has not yet

From 2 to size+1 Interrupt data

From size+2 to 64 |Not used

Table 27: GET_INTERRUPT Reply Packet Layout.

4.3 MicroBlaze APl Commands

These commands differ from USB FX2 API commands because they are executed by the
MicroBlaze and shall be sent with the [2C_WRITE USB FX2 API command; more precisely, after
it in the Command byte array. [2C_WRITE USB FX2 API command (with the Commmand byte
array) is itself a parameter of USB FX2 API function TE USB_FX2 SendCommand().

The byte array shall be properly initialized using instructions similar to the ones listed below:

Command[0] = I2C WRITE;
Command[1l] = MB I2C ADRESS;
Command[2] = I2C BYTES;
Command[3] = 0;

Command[4] = 0;

Command[5] = 0;

Command[6] = Command2MB;

Command2MB it is one of the commands listed in Table 2. This command writes data (from 1 to 32

bytes) to the requested 12C address.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 0x3F I2C Address
MB_12C ADRESS=0x3F
3 0x0C FX2 Parameters.]2C_BYTES=0x0C
(12) Number of bytes to write (max 32)
4 0x00 -
5 0x00 -
6 0x00 -
7 Command2MB MB_Commands to send to the MicroBlaze
From 8 to 64 - Not used

Table 28: MB_Command Packet Layout.

Reply packet doesn't contain any usable information.

4.3.1 FX22MB_REGO_NOP

This command is used as No Operation.

4.3.2 FX22MB_REGO0_GETVERSION

This command is used to request the FPGA firmware version. This function is not able to return
directly 4 bytes representing the FPGA firmware version. The procedure requested is the following:
1. SET_INTERRUPT on MB_12C_ADDRESS requesting I2C_BYTES
2. 12C_WRITE with MB_Command FX22MB_REGO0_GETVERSION at byte 7
3. GET_INTERRUPT

4.3.2.1 Code Form
//M)SET_INTERRUPT on MB_I2C_ADRESS requesting 12C_BYTES

Command[0] = SET INTERRUPT;
Command[1l] = MB I2C ADRESS;
Command[2] = I2C BYTES;

if (TE_USB_FX2 SendCommand (USBDeviceList, Command, CmdLength, Reply,
ReplyLength, 1000))
{

cout << "Error" << endl;

return -1;

}

2)I12C WRITE with MB Command FX22MB REGO GETVERSION at byte 7

Command[0]
//Command [

= I2C_WRITE; //O0xAD;//command I2C_WRITE
1]
//Command[2]

= MB_I2C_ADRESS;
I2C_BYTES;

Command [3] 0;
Command [4] 0;
Command[5] = 0;
Command[6] = FX22MB REGO GETVERSION;//l1; //get FPGA version

if (TE_USB FX2 SendCommand (USBDeviceList, Command, CmdLength, Reply,
ReplyLength, 1000))
{

cout << "Error" << endl;

return -1;

}

3)GET_INTERRUPT

Command[0] = GET INTERRUPT; //0xBl;//command GET INTERRUPT

if (TE_USB_FX2 SendCommand (USBDevicelList, CardNo, cmd, cmd len, reply,
ReplyLength, 1000))
{
if ((ReplyLength > 4) && (Reply[0] != 0))
{
//Console.WriteLine ("INT# : {0}", Reply[0]);
printf ("Major version: %d \n", Reply[1l]);
printf ("Minor version: %d \n", Reply[2]);
printf ("Release version: %d \n", Reply[3]):;
printf ("Build version: %d \n", Replyl[4]);

}

4.3.2.2 Table Form

This command sets address and number of bytes to read from the 12C bus when an interrupt request

1s received.

Byte Value Description
1 0xBO SET_INTERRUPT command ID
2 Ox3F I2C Address
MB_12C_ADRESS=0x3F
3 0x0C Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 29: SET_INTERRUPT Command Packet Layout.

Reply packet doesn't contain any usable information.

This command writes data (12 bytes) to requested 12C address.

Byte Value Description

1 OxAD 12C_WRITE command ID

2 0x3F 12C Address
MB_12C_ADRESS=0x3F

3 0x0C FX2 Parameters.]2C_BYTES=0x0C

(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 0x01 MB_Commands.FX22MB_REG0_GETVERSION
It request to the MicroBlaze the return of 4 bytes
representing FPGA firmware version

From 8 to 64 - Not used

Table 30: FX22MB_REGO_GETVERSION MicroBlaze command.

Reply packet doesn't contain any usable information.

This command pulls the number of received interrupts and received data (number o bytes set by

SET INTERRUPT command) from USB FX2.

Byte

Value

Description

1

0xB1

GET_INTERRUPT command ID

From 2 to 64

Not used

Table 31: GET_INTERRUPT Command Packet Layout.

Byte Description

1, reply[0] Interrupt number.

If zero means that GET_INTERRUPT has not been able to retry
data because the interrupt created by SET_INTERRUPT has not yet
been serviced.

2, reply[1] Interrupt data [0] : Major Version
3, reply[2] Interrupt data [1] : Minor Version
4, reply[3] Interrupt data [2] : Release Version
5, reply[4] Interrupt data [3] : Build Version
From 6 to 64 Not used

Table 32: GET_INTERRUPT Reply Packet Layout.

4.3.3 FX22MB_REGO_START TX

This command starts reading data integrity test for the data transmitted from EP6 of the USB FX2
to the host computer.

This MicroBlaze command does not require the use of SET INTERRUPT before and
GET INTERRUPT after. It is instead required to send this command before starting data
transmission from the USB FX2 to the host computer. It is also required to use
FX22MB REGO STOP after the data transmission is ended.

4.3.3.1 Combination 1 (simplified version)

int TX PACKET LEN = 51200;//102400;

int packetlen = TX PACKET LEN;

unsigned int packets = 500;//1200;//1200;

unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;
unsigned long TIMEOUT= 18;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;

unsigned int errors = 0;

bool printout= false;

data = new byte [TX PACKET LEN*packets]; //allocate memory

bool bResultDataRead = false;

unsigned int XferSizeRead = 0;

//Shortest and more portable way to select the Address using the
PipeNumber

PI PipeNumber PipeNo = PI EP6;

//starts test

SendFPGAcommand (USBDeviceList, FX22MB REGO START TX) ;

CCyBulkEndPoint *BulkInEP = NULL;

TE USB FX2 GetData InstanceDriverBuffer (USBDevicelist,

&BulkInEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);

//StopWatch start
ElapsedTime.Start () ;
for (unsigned int 1 = 0; i < packets; 1i++)
{
packetlen = TX PACKET LEN;
data temp = &data[total cnt];
if (TE USB FX2 GetData (&BulkInEP, data temp, packetlen))
{
cout << "ERROR read" << endl;
errors++;
break;
}
total cnt += packetlen;

}

//DEBUG StopWatch timer
TheElapsedTime = ElapsedTime.Stop (false);
SendFPGAcommand (USBDeviceList, FX22MB REGO STOP) ;

4.3.3.2 Combination 2 (simplified version)

int TX PACKET LEN = 51200;//102400;

int packetlen = TX PACKET LEN;

unsigned int packets = 500;//1200;//1200;

unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;
unsigned long TIMEOUT= 18;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;

unsigned int errors = 0;

bool printout= false;

data = new byte [TX PACKET LEN*packets]; //allocate memory
bool bResultDataRead = false;
unsigned int XferSizeRead = 0;

//Shortest and more portable way to select the Address using the
PipeNumber
PI PipeNumber PipeNo = PI EP6;

CCyBulkEndPoint *BulkInEP = NULL;

TE USB FX2 GetData InstanceDriverBuffer (USBDevicelist,
&BulkInEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);
//StopWatch start
ElapsedTime.Start () ;
for (unsigned int i = 0; 1 < packets; i++)
{
packetlen = TX PACKET LEN;

data temp = &data[total cnt];
//starts test
SendFPGAcommand (USBDeviceList, FX22MB REGO START TX);
if (TE USB FX2 GetData (&BulkInEP, data temp, packetlen))
{
cout << "ERROR read" << endl;
errors++;
break;
}
total cnt += packetlen;
SendFPGAcommand (USBDeviceList, FX22MB REGO STOP) ;
}
//DEBUG StopWatch timer
TheElapsedTime = ElapsedTime.Stop (false);

Note: If you use combination 2,
* the data throughput is halved with regard to combination 1 and
* the test will fail because it is not the way it is supposed to be used.

This command writes data (12 bytes) to the requested [2C address.

Byte Value Description
1 OxAD 12C_WRITE command ID
2 0x3F I2C Address
MB_12C_ADRESS=0x3F

3 0x0C FX2 Parameters.I2C_BYTES=0x0C

(12) Number of bytes to write (max 32)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x02 MB Commands.FX22MB REGO START TX

Start read data integrity test of data transmitted
from EP6 of FX2 to computer.

From 8 to 64 - Not used

Table 33: FX22MB_REGO_START _TX MicroBlaze command.

Reply packet doesn't contain any usable information.

4.3.4 FX22MB_REGO0_START_RX

This command starts writing data integrity test for the data transmitted from the host computer to
EP8 of the USB FX2.

This MicroBlaze command does not require the use of SET INTERRUPT before and

GET INTERRUPT after. It is instead required to send this command before starting data
transmission from the host computer to the USB FX2. It is also required to use

FX22MB REGO STOP after the data transmission is ended.

4.3.4.1 Combination 1 (simplified version)

int TX PACKET LEN = 51200;//102400;

int packetlen = TX PACKET LEN;

unsigned int packets = 500; //1200;//1200;
unsigned long TIMEOUT = 1000;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;

unsigned int errors = 0;

double TheElapsedTime = 0;

PI PipeNumber PipeNo = PI EPS;

data = new byte [TX PACKET LEN*packets]; //allocate memory //

ResetFX2FifoStatus (USBDevicelist) ;
//starts test
SendFPGAcommand (USBDeviceList, FX22MB REGO START RX) ;

bool bResultDataWrite = false;
byte PipeNoHex = 0x00;

unsigned int XferSizeRead=0;
unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;

// Find a second bulk OUT endpoint in the EndPoints[] array
CCyBulkEndPoint *BulkOutEP = NULL;

TE USB FX2 SetData InstanceDriverBuffer (USBDevicelist,
&BulkOutEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);

ElapsedTime.Start(); //StopWatch start
total cnt = 0;
for (unsigned int i1 = 0; i < packets; 1i++)

{
long packetlen = RX PACKET LEN;
data temp = &data[total cnt];

if (TE USB FX2 SetData (&BulkOutEP, data temp, packetlen))
{
cout << "ERROR" << endl;
break;
}
total cnt += packetlen;
}
//StopWatch timer
TheElapsedTime = ElapsedTime.Stop (false);
//stops test
SendFPGAcommand (USBDeviceList, FX22MB REGO STOP) ;

4.3.4.2 Combination 2 (simplified version)

int TX PACKET LEN = 51200;//102400;

int packetlen = TX PACKET LEN;

unsigned int packets = 500; //1200;//1200;
unsigned long TIMEOUT = 1000;

byte * data;

byte * data temp = NULL;

unsigned int total cnt = 0;

unsigned int errors = 0;

double TheElapsedTime = 0;

PI PipeNumber PipeNo = PI EPS;

data = new byte [TX PACKET LEN*packets]; //allocate memory //

ResetFX2FifoStatus (USBDevicelist) ;
//starts test

bool bResultDataWrite = false;
byte PipeNoHex = 0x00;

unsigned int XferSizeRead=0;
unsigned int DeviceDriverBufferSize = 131072;//409600;//131072;

// Find a second bulk OUT endpoint in the EndPoints[] array
CCyBulkEndPoint *BulkOutEP = NULL;

TE USB FX2 SetData InstanceDriverBuffer (USBDevicelist,
&BulkOutEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);

ElapsedTime.Start (); //StopWatch start
total cnt = 0;
for (unsigned int 1 = 0; i < packets; 1i++)
{
long packetlen = RX PACKET LEN;
data temp = &data[total cnt];
SendFPGAcommand (USBDeviceList, FX22MB REGO START RX);
if (TE USB FX2 SetData (&BulkOutEP, data temp, packetlen))
{
cout << "ERROR" << endl;
break;
}
SendFPGAcommand (USBDeviceList, FX22MB REGO STOP) ;
total cnt += packetlen;
}
//StopWatch timer
TheElapsedTime = ElapsedTime.Stop (false);
//stops test

Note: If you make the combination 2
* data throughput is halved with regard to combination 1 and

* the test will fail because it is not the way it is supposed to be used.

This command writes data (12 bytes) to the requested [2C address.

Byte Value Description
1 OxAD 12C_WRITE command ID
2 0x3F I2C Address
MB_I2C_ADRESS=0x3F

3 0x0C FX2 Parameters.I2C_BYTES=0x0C

(12) Number of bytes to write (max 32)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x03 MB_Commands.FX22MB_REG0O_START RX

Start read data integrity test of data transmitted
from computer to EP8 of FX2.

From 8 to 64 - Not used
Table 34: FX22MB_REGO_START_RX MicroBlaze command.

Reply packet doesn't contain any usable information

4.3.5 FX22MB_REGO0_STOP

This command stops both the test started by FX22MB REGO START TX (0x02, read test) and
FX22MB REGO START RX (0x03, write test).

This MicroBlaze command does not require the use of SET INTERRUPT before and

GET INTERRUPT after. It is instead required to send this command after

the data transmission (form the USB FX2 to the host computer or from the host computer to the
USB FX2) is ended. See 4.3.3 FX22MB REGO START TX and 4.3.4
FX22MB REGO START RX for more information.

This command writes data (12 bytes) to the requested 12C address.

Byte Value Description

1 OxAD I2C_WRITE command ID

2 0x3F I2C Address
MB_12C_ADRESS=0x3F

3 0x0C FX2 Parameters.]2C_BYTES=0x0C

(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 0x04 MB_Commands.FX22MB_REG0O_STOP
Stop both the test started by
FX22MB_REGO START TX (0x02, read test) and
FX22MB_REGO_START RX (0x03, write test)

From 8 to 64 - Not used

Table 35: FX22MB_REGO_STOP MicroBlaze command.

Reply packet doesn't contain any usable information.

4.3.6 FX22MB_REGO_PING

This command writes data (12 bytes) to the requested 12C address. A “pong” 0x706F6EG67
value shall be returned.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 0x3F |I2C Address
MB _12C_ADRESS=0x3F

3 0x0C FX2 Parameters.[2C_BYTES=0x0C

(12) Number of bytes to write (max 32)
4 0x00 MB_Commands.FX22MB REGO0 NOP
5 0x00 MB_Commands.FX22MB_REGO0 NOP
6 0x00 MB_Commands.FX22MB_REG0_NOP
7 0x05 MB_Commands.FX22MB_REGO_PING
From 8 to 64 - Not used

Table 36: FX22MB_REGO_PING MicroBlaze command.

Reply packet contains the value 0x706F6E67.

5 APl usage example program

5.1 First Example: select module, read firmware version, read VID/PID
This example program implements a simple console that

1. creates an instance (USBDevicelList) initialized to null of the class CCyUSBDevice
2. reads and displays the number of Trenz Electronic modules (TE_USB_FX2 ScanCards())

3. selects the first (0) Trenz Electronic module;
an handle to the device driver is open but not exposed to the user

4. reads and displays VID and PID of the selected module
5. reads the firmware version of the selected module

6. selects the second (1) Trenz Electronic module;
the previous handle is automatically closed and another handle (this time associated with the
new Trenz Electronic module) to the device driver is opened but not exposed to the user. If
the selected module is not attached to the USB bus, the previous handle is automatically
closed but a new one is not opened.

7. reads the FPGA firmware version of the second (1) module

//This line creates a list of USB device that are used through
//Cypress driver

CCyUSBDevice *USBDevicelist = new
CCyUSBDevice((HANDLE)O,CYUSBDRV_GUID,true);

unsigned long Timeout = 1000;

int NumberOfCardAttached = TE USB FX2 ScanCards (USBDeviceList) ;
cout << endl << NumberOfCardAttached << endl;

//If you want use the first Trenz Electronic module use 0
if (TE USB FX2 Open (USBDeviceList, 0)==0)

cout << "Module is connected!" <<endl;
else

cout << "Module 1is not connected!" <<endl;

//USBDevice->0Open (CypressDeviceNumber); it is used in
//TE_USB_FX2 Open ()

int vID = USBDevicelist->VendorID;

int pID = USBDevicelist->ProductID;

cout << "VID" << vID << endl;

cout << "PID" << pID << endl;

byte Command[64], Reply[64];
long CmdLength = 64;
long ReplyLength = 64;

Command|[0] = 0x00;//comand read FX2 version

if (!TE USB FX2 SendCommand (USBDevicelist, Command, CmdLength,

Reply, ReplylLength, Timeout))
{

if (ReplylLength >= 4)

{

printf ("Major version: %d \n", Reply[0]);
printf ("Minor version: %d \n", Reply[l]);
printf ("Device hi: %d \n", Reply[2]);
printf ("Device lo: %d \n", Reply[3]);
}
}
else

cout << "Error" << endl;

//If you want use the first Trenz Electronic module use 1
if (TE USB FX2 Open (USBDeviceList, 1)==0)

cout << "Module is connected!" <<endl;
else

cout << "Module 1is not connected!" <<endl;

byte Command 1[64], Replyl[64];
long CmdLengthl = 64;
long ReplyLengthl = 64;

Commandl[0] = SET INTERRUPT; //0xBO;//comand SET INTERRUPT
Commandl[1] = MB I2C ADRESS; //0x3F;//I2C slave address
Commandl[2] = I2C BYTES;//12;//12 bytes payload

if (TE _USB FX2 SendCommand (USBDeviceList, Commandl, CmdLengthl,
Replyl, ReplyLengthl, Timeout))
cout << "Error Send Command SET INTERRUPT" << endl;

Commandl [0] I2C WRITE; //0xAD;//comand I2C WRITE

Commandl [3] = O;
Commandl [4] = 0;
Commandl [5] = 0;
Commandl [6] = FX22MB REGO GETVERSION; //1; //get FPGA version

if (TE _USB FX2 SendCommand (USBDeviceList, Commandl, CmdLengthl,
Replyl, ReplyLengthl, Timeout))
cout << "Error Send Command Get FPGA Version" << endl;

Command[0] = GET_INTERRUPT; //0xBl;//comand GET_ INTERRUPT

if (!TE USB FX2 SendCommand (USBDeviceList, Commandl, CmdLengthl,
Replyl, ReplyLengthl, Timeout))
{

if ((ReplyLengthl > 4) &&(Replyl[0] != 0))

{

printf ("Major version: %d \n", Replyl[1l]);
printf ("Minor version: %d \n", Replyl[2]

)
) 7
printf ("Release version: %d \n", Replyl[3]);

printf ("Build version: %d \n", Replyl[4]);
}
}

else
cout << "Error, GET INTERRUPT" << endl;

5.2 Second Example: Read Test
See section 4.3.3 FX22MB REGO START TX.

5.3 Third Example: Write Test
See section 4.3.4 FX22MB_REGO START RX.

6 TE_USB_FX2_CyAPILdlIl:
Data Transfer Throughput Optimization

6.1 Introduction

XferSize is the dimension (in bytes) of the buffer reserved (on the host computer) for the
data transfer over the USB channel between one USB FX2 endpoint and the host
computer.

PacketSize is the dimension (in bytes) of the data array to be transferred over the USB
channel between one USB FX2 endpoint and the host computer. This data array is
subdivided into packets of dimension < MaxPktSize = 512 and scheduled for transmission over
the USB channel.

6.2 XferSize (driver buffer size) Influence

Given a PacketSize of 102,400 bytes (it can be subdivided into 200 USB packets of 512 bytes), the
influence of XferSize (driver buffer size reserved for data communication) on the throughput is
reported in the following table.

Throughput
XferSize (bytes) (Mbyte/s)

PacketSize = 102,400 bytes

4,096 (Cypress Default) 15.6

8,192 20.4

16,384 26.3

32,768 30.2

65,536 34.1

131,072 36.2

262,144 36.7

Table 37: data throughput as a function of XferSize given PacketSize = 102,400 bytes.
To change XferSize in C++, the method

BulkEndPoint->SetXferSize (DesiredValue) ;
shall be used. Cypress sets DesiredValue to 4,096 bytes by default. This default value is not
documented in the CyAPI.lib manual (pag 62 of CyAPILpdf), but it has been retrieved by using the
following C++ instructions:

int XferSizeReadValue = BulkEndPoint->GetXferSize();
cout<< "XferSizeReadValue" << XferSizeReadValue <<endl;

6.3 PacketSize (transfer data size) Influence

Given an XferSize (driver buffer size) of 131,072 bytes, the influence of PacketSize on the

throughput is reported in the following table.

Packet Size (bytes) Throughput (Mbyte/s)
XferSize = 131,072 Bytes

512 2.32
1,024 4.25
2,048 7.65
4,096 15.22
8,192 20.35
16,384 25.45
32,768 31.05
65,536 35.34
131,072 37.01

Table 38: data throughput as a function of PacketSize given XferSize = 102,400 bytes.
To transfer the array of data with dimension PacketSize in C++, the method XferData() shall be

used.

6.4 Conclusion
If a higher throughput is desired,

1. the value of XferSize shall be greater than the default one

2. the data to be transferred shall be organized in large data array(s)

Recommended values are :

* XferSize = 131,072 bytes and PacketSize = 131,072 bytes

for a throughput of =~ 37 Mbyte/s.

* XferSize = 65,536 bytes and PacketSize = 65,536 bytes

for a throughput of = 35 Mbyte/s.

6.5 Appendix : Charts

Throughput Vs XferSize
PacketSize 102400 Byte

40
35
30
25
20
15
10

=== Throughput

Throughput [Mbyte/s]

0 20000 40000 60000 80000 100000 120000 140000
XferSize [Byte]

Chart 1: data throughput [Mbyte/s] as a function of XferSize [byte] given PacketSize = 102,400
bytes.

Throughput vs PacketSize
XferSize (driver buffer) 131072 byte

40
35
30
25
20
15
10

=== Throughput

Throughput [Mbyte/s]

0 20000 40000 60000 80000 100000 120000 140000
PacketSize [byte]

Chart 2: data throughput [Mbyte/s] as a function of PacketSize [byte] given XferSize = 102,400
bytes.

7 Appendix A : Open the Visual Studio 2010 project

The Visual Studio project file *.sIn
(TE_USB_FX2_CyUSB_SampleApplication.sln and TE_USB_FX2_CyUSB.slIn)
can be open

1.

using right click ;

2. and then select “Open with”;

3. and then select “Microsoft Visual C++ 2010 Express” or “Microsoft Visual Studio

2010” (the latter is used if Visual Studio 2010 Professional is installed).

If Visual Studio 2010 Express is used to compile 64 bit C++ programs, Microsoft Windows
SDK 7.1 must be installed after the installation of Visual Studio 2010 Express.

After the project file is open you must select the correct parameter (in particular if you use
the version of the code from GitHub instead of precompiled software project or create a
new softwareproject) for the 32 and 64 bit case.

You must follow this procedure:

1. Open the project

2. wait the end of the parsing (it is shown at lower left with a white “Ready”

© ® N o O

10.

1.
12.
13.
14.
15.

16.

17.
18.
19.

right-click “Solution 'TE_USB_FX2_CyAPI|_SampleApplication” under “Solution
Explorer”

a new window pop up (“Solution 'TE_USB_FX2_CyAPI_SampleApplication”
Property Pages”)

select “Configuration Properties”

left-click “Configuration Manager...”

a new window pop up (“Configuration Manager”)
for “Active solution configuration” select “Release”

for “Active solution platform” select “Win32” (“x64” for 64 bit case)
If “x64” does not exist you must create this option with <Edit>

if are not already selected in the table, select “Release” for “Configuration” and

e

“Win32” for “Platform” (Build must also selected with a “v” shown);
left click “Close”

the window “Configuration Manager” is closed

verify that “Win32” (“x64”) is selected for “Platform”

verify that “Release” is selected for “Configuration”

in the window “Solution 'TE_USB_FX2 CyAPIl _SampleApplication” Property
Pages” select “Apply” and then “Ok”

the window “Solution 'TE_USB_FX2_ CyAPI_SampleApplication” Property Pages”
is closed

right-click “TE_USB_FX2_CyAPI_SampleApplication” under “Solution Explorer”
select “Configuration Properties” then “General”

a)“Platform Toolset” must be selected “v100” for 32 bit (both Express and
Professional) and for 64 bit professional.

b)“Platform Toolset” must be selected “Windows7.1SDK” for 64 bit Express
20. select “Configuration Properties” then “C/C++”, then “Preprocessor”
21.select “Preprocessor Definitions” must be left clicked,
22.left click the black arrow pointing toward the bottom and then select <Edit>
23.a new window pop up (“Preprocessor Definitions”)
24 .add “WIN32” and then click return,
25.add “NDEBUG” and then click return
26.add “* CONSOLE” and then click return
27.select “OK”
28.the window “Preprocessor Definitions” is closed
29. select “Configuration Properties” then “C/C++”, then “Linker”
30.select “Input”, then “Ignore specific default libraries”
31.left click the black arrow pointing toward the bottom and then select <Edit>
32.a new window pop up (“Ilgnore Specific Default Libraries”)
33.add “libcmt.lib” and then click return
34.select “OK”
35.select “Input”, then “Additional Dependencies”
36.left click the black arrow pointing toward the bottom and then select <Edit>
37.a new window pop up (“Additional Dependencies”)
38.add “setupapi.lib” and then click return
39.add “CyApi.lib” and then click return
40.select “OK”
41.select “debugging”, then “Generate Debug”
42.left click the black arrow pointing toward the bottom and then select “Yes(/DEBUG)”
43.click “Apply” and then “OK”.

8 Appendix B : use of pdb file (symbolic debugging)
You can choose to use the pdb file for a debugging based on symbol.
If you compile using pdb file, the compilation is more slow.

If you want deactivate the service or change the directory of pdb files used you must follow
this procedure:

select “Debug” in the project open

select “Options and Settings...” in the list open
a new window pop up (“Options”)

select “Debugging” then “Symbols”

o kw0 Dn =

select the “Symbol file (.pdb) locations:” you can choose “Microsoft Symbol Server”
or a directory of your choice or nothing (in this latter case, in step of compilation you
are informed that Visual Studio is unable to charge the symbols of various DLLs

9 Document Change History

version date aut description
hor
09 2012-06-01 P |Release Preview
' FDR '
SP, .
1.0 2012-06-14 FDR Initial release.

Typo corrected (CyAPL.lib (right) in place of CyAPI.dll
SP, |(wrong)).

11 2012-09-07 |EpR | Added a clarification in Section 3 at step 13 and 15 about the
files necessary for the project compilation.
1.2 2013-04-05 |FDR |Improved "Hardware, firmware and software stack" table.

10 Bibliography
[1] TEO3xx Series Application Notes, Xilinx Spartan-3* Industrial-Grade FPGA Micromodules
AN-TEO03xx (v2.01) April 6, 2011

http:/www.trenz-
electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-

TEO03xx.pdf

[2] Introduction to CyAPLlib Based Application Development Using VC++ March 3, 2011
Document No. 001-61744 Rev. *C 1, AN61744

http://www.cypress.com/?rID=43538

[3] Cypress CyAPI Programmer's Reference, 2010 Cypress Semiconductor
more recent version inside Cypress Suite USB 3.4.7

http://cosmiac.ece.unm.edu/images/5/50/CyAPLpdf
[4] Cypress CyUsb.sys Programmer's Reference
http://www.cypress.com/?docID=26658
[5] Plug And Play
http://www.cypress.com/?1d=4&rID=37592

http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.cypress.com/?id=4&rID=37592
http://www.cypress.com/?docID=26658%20
http://cosmiac.ece.unm.edu/images/5/50/CyAPI.pdf
http://www.cypress.com/?rID=43538

	1 Introduction
	1.1 API Functions (First API Set)
	1.1.1 Synchronous Functions
	1.1.2 Timeout Setting
	1.1.3 BufferSize (also called XferSize)
	1.1.4 PacketSize

	1.2 MicroBlaze API Commands (Second API Set)

	2 Requirements
	3 API Functions
	3.1 TE_USB_FX2_ScanCards()
	3.1.1 Declaration
	3.1.2 Function Call
	3.1.3 Description
	3.1.4 Parameters
	3.1.5 Return Value

	3.2 TE_USB_FX2_Open()
	3.2.1 Declaration
	3.2.2 Function Call
	3.2.3 Description
	3.2.4 Parameters
	3.2.5 Return Value

	3.3 TE_USB_FX2_Close()
	3.3.1 Declaration
	3.3.2 Function Call
	3.3.3 Description
	3.3.4 Parameters
	3.3.5 Return Value

	3.4 TE_USB_FX2_SendCommand()
	3.4.1 Declaration
	3.4.2 Function Call
	3.4.3 Description
	3.4.4 Parameters
	3.4.5 Return Value

	3.5 TE_USB_FX2_GetData_InstanceDriverBuffer()
	3.5.1 Declaration
	3.5.2 Function Call
	3.5.3 Description
	3.5.4 Parameters
	3.5.5 Return Value

	3.6 TE_USB_FX2_GetData()
	3.6.1 Declaration
	3.6.2 Function Call
	3.6.3 Description
	3.6.4 Expected Data Throughput
	3.6.5 DataRead Size Shall Not Be Too Large
	3.6.6 DataRead Size Shall Not Be Too Small
	3.6.7 Parameters
	3.6.8 Return Value

	3.7 TE_USB_FX2_SetData_InstanceDriverBuffer()
	3.7.1 Declaration
	3.7.2 Function Call
	3.7.3 Description
	3.7.4 Parameters
	3.7.5 Return Value

	3.8 TE_USB_FX2_SetData()
	3.8.1 Declaration
	3.8.2 Function Call
	3.8.3 Description
	3.8.4 Expected Data Throughput
	3.8.5 DataWrite Shall Not Be Too Large
	3.8.6 DataWrite Shall Not Be Too Small
	3.8.7 Parameters
	3.8.8 Return Value

	4 API Commands
	4.1 Introduction
	4.1.1 Reference Architecture
	4.1.2 Custom Logic Block

	4.2 USB FX2 API Commands
	4.2.1 READ_VERSION
	4.2.2 INITIALIZE
	4.2.3 READ_STATUS
	4.2.4 RESET_FIFO
	4.2.5 FLASH_READ
	4.2.6 FLASH_WRITE
	4.2.7 FLASH_ERASE
	4.2.8 EEPROM_READ
	4.2.9 EEPROM_WRITE
	4.2.10 FIFO_STATUS
	4.2.11 I2C_WRITE
	4.2.12 I2C_READ
	4.2.13 POWER
	4.2.14 FLASH_WRITE_COMMAND
	4.2.15 SET_INTERRUPT
	4.2.16 GET_INTERRUPT

	4.3 MicroBlaze API Commands
	4.3.1 FX22MB_REG0_NOP
	4.3.2 FX22MB_REG0_GETVERSION
	4.3.2.1 Code Form
	4.3.2.2 Table Form

	4.3.3 FX22MB_REG0_START_TX
	4.3.3.1 Combination 1 (simplified version)
	4.3.3.2 Combination 2 (simplified version)

	4.3.4 FX22MB_REG0_START_RX
	4.3.4.1 Combination 1 (simplified version)
	4.3.4.2 Combination 2 (simplified version)

	4.3.5 FX22MB_REG0_STOP
	4.3.6 FX22MB_REG0_PING

	5 API usage example program
	5.1 First Example: select module, read firmware version, read VID/PID
	5.2 Second Example: Read Test
	5.3 Third Example: Write Test

	6 TE_USB_FX2_CyAPI.dll: Data Transfer Throughput Optimization
	6.1 Introduction
	6.2 XferSize (driver buffer size) Influence
	6.3 PacketSize (transfer data size) Influence
	6.4 Conclusion
	6.5 Appendix : Charts

	7 Appendix A : Open the Visual Studio 2010 project
	8 Appendix B : use of pdb file (symbolic debugging)
	9 Document Change History
	10 Bibliography

