C# TE_USB_FX2 API

reference manual
General Index

L [0 o Yo (8o i o o TSP SPPSORPPPIN 4
1.1 APl Functions (FirSt API Set)..... ... e e 4
1.1.1 Synchronous FUNCLIONS..........uuiiiiiiiiii e 4
1.1.2 TiMeOUt SEHING....ooiiiiiiiiieeeeeeeeeeeeeee e 5
1.1.3 BufferSize (also called XferSize)........oooiuiiiiiiiiiii e 5
1,14 PACKELSIZE....cooi it e e 6
1.2 MicroBlaze APl Commands (Second APl Set).........coooiiiiiiiiiiiiiiieeeeeeiii 6
2 ReQUIFEMENTS... ..ot e e e e e e e et e e e e e e e e e e anaaan 7
3 AP FUNCHIONS. ...ttt e e e e e et e e e e e e e e e e et e e e eaanaeaeees 8
3.1 TE_USB_FX2_SCANCaArdS()......uuuueeeeeeeeeeiiiiitieieeeeaaeasssanseeeeeeeaeessssannssseeeeeeeeesssssnnes 9
3. 1.1 DECIAratioN......eeeieee e 9
3.1.2 FUNCHON Call.. .. e e e a e e e as 9
3.1.3 DS ION. ... e 9
3. 1.4 Parameters. e s 9
315 RetUMN VAIUE.......oooee ettt e 9
3.2 TE_USB_FX2_OPEN().ciitteuttteiiiieaaeeeaaeiiieeieeeaaeesaasnseeeeeeeeeassssasssseeeeeseeeeeeseeensnnes 10
3.2.1 DeCIAratioN.........eiieieieeeeeeee s 10
3.2.2 FUNCHON Call......eeeeeee e e e e as 10
3.2.3 DESCIIPION. . ———— 10
3.2.4 ParameterS. e e e eeeennnn 10
3.25 RetUMN VAIUE.......oooeiee et 10
3.3 TE_USB_FX2 _ClOSE().eeeeeeaaurrreeiieiaaeeeieieiiteeeeeeeeeesssaneeeeeeaeeseessannsaneeeaaaaaaaeaaaaaaaes 11
3.3.1 DEClaratioN.........uiieiieeeeeeeee e 1"
3.3.2 FUNCHON Call.......eeiieeeieieee et e e e e e e e e eeennnne 11
3.3.3 DESCIIPION. .- 11
3.3.:4 Parameters..... ... e e e e e eennnnn 12
3.3.5 RetUMN VAIUE.......oooeee et 12
3.4 TE_USB_FX2_SendCommand()......ccccuuruurmmmmrieeeeeeieiiiieeeieeeeeessssneneeeeeeeeeeessnnnnnns 13
341 DEClaratioN.........oiii i 13
3.4.2 FUNCHON Call......eeeeeeeeee e e e 13
3.4.3 DESCIIPON. .. ————— 13
3.4.4 Parameters..... ... e eeeeeeannnn 13
345 RetUMN VAIUE.......oooii et e 14
3.5 TE_USB_FX2_GetData()... . ueeieeeeeiiiiiiiiiiiiie et e e e e e e e e e e e e 15
3.5.1 DeClaration.........eciiiiieieeeeee s 15
3.5.2 FUNCHON Call.......eeeeeeeee e e 15
3.5.3 DESCIIPON. ... ———— 15
3.5.4 Expected Data Throughput.............coooiiiiiiiiiiiiiieeeee e 15
3.5.5 DataRead Size Shall Not Be ToO Large.......ccccccooiiimiiiiiiiieiieeiiiiinnn 15
3.5.5.1 Reduced version (pSeudo COAE).........ccoiiuriiiiiiieeeiieiiieiiee e 15
3.5.5.2 Expanded version (COUE)........cuuiiiiiiiiiiiiaaeee it 16
3.5.6 DataRead Size Shall Not Be Too Small...........ccccceeiiiiiiiiiiiiiieeeeeeeeeeie 16
.57 Par@meterS.....u oo 17
3.5.8 Return Value..........ooo 17
3.6 TE_USB _FX2 SetData().....cceiieeiiiiiiiiiiieiiee e ettt e e e e e 19

B.0. 1 DO AIAtION 19

B.8.2 FUNCHON Call ..o et r e ans 19

3.6.3 DESCIIPIION. ... e 19
3.6.4 Data throughput expected..........ccoooiiiiiiiiiieeeee e 19
3.6.5 DataWrite size shall not be too large...........oooviiiiiiiiiiii e, 19
3.6.5.1 Reduced version (pSeUdO COAE).........coviuuriiiiiiiieiiiiiiiieeeee e 19
3.6.5.2 Expanded version (COUE).......cuuiiiiiiiiiiiieee et 20
3.6.6 DataWrite size shall not be t00 small.............ooovviiiiiiiiiiiiiiiee e 20
3.6.7 Parameters...... ... e e e e eeeannnn 20
3.6.8 Return Value..........oooooiiiiiii 21
O N e I O o 40 = T o R 22
S T [01 (o Yo [o o o TP 22
4.1.1 Reference ArchiteCture............ovii i 22
4.1.2 Custom LOGIC BIOCK.......ccuiiiiiiiiiiiiiieeee e 22
4.2 USB FX2 APl COMMANGS.......cuuiiiiiiiieeeeeeeeiieeiee e e e e e e s ee e e e e e e e s snnnnnaaeeeaaaeeeaeeeens 26
421 READ_VERSION.ottt 26
4.2.2 INITIALIZE.ottt e et e e e e e e e e et eeeaeaaeeeeeeees 26
4.2.3 READ _STATUS ..o e e e e e e e e e aaaaes 26
N = s T B 1 27
4.25 FLASH _READ....... et e e e e e e e e e e e e e aaaa e 27
4.2.6 FLASH _WRITE. ...ttt 27
427 FLASH ERASE...... o oo e e 28
4.2.8 EEPROM _READ........ ittt e e e e a e e e e e e e aeaaaaaaees 28
429 EEPROM WRITE. ...ttt 29
4210 FIFO _STATUSottt e e e e e e e e e e e e e e e eeeeeeeees 29
4211 12C WRITE....c ettt e e e e e e e e e e e e e e e e e enabraneeeeees 29
N 1 VA O o = Y D B 30
4213 POWER. ... 30
4214 FLASH_WRITE_COMMAND.......coi ittt 30
4215 SET INTERRUPTo e e e e e e 31
4216 GET_INTERRUPT ...ttt e e 31
4.3 MicroBlaze APl COMMANGS.........cuuiiiiieiiiieiieiieeeieeeeeieeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeernn s 32
4.3.1 FX22MB_REGO _NOP.... .t e e e e e e e e e e 33
4.3.2 FX22MB_REGO_GETVERSION........ootiiiiiiiiieiceeee et 33
v 3G 1200t B @7 To [N o] 4 o ¢ TP 33
4.3.2.2 Table FOrM.....ooo 33
4.3.3 FX22MB_REGO_START _TX. ittt 35
4.3.3.1 Combination 1 (simplified Version)..........ccccouueieiiiiiiiiiiiiiiee s 35
4.3.3.2 Combination 2 (simplified Version)...........cccoueeieirieiiiiiciiieeee e 36
4.3.4 FX22MB_REGO_START _RX. ettt 37
4.3.4.1 Combination 1 (simplified Version)...........cccoueeieireeiiiiiiiieeee e 37
4.3.4.2 Combination 2 (simplified Version)..........ccccuueiieiiiiiiiiiiiiieeee s 37
4.3.5 FX22MB_REGO_STOP......oetiiiiieieiieieee et e e e e e e e e e aaae e 38
436 FX22MB_REGO _PING.......ottiiiiiiie e a e e 39
5 APl Usage Example Program.............euiiiii oot e e 40
5.1 First Example: select module, read firmware version, read VID/PID..................... 40
5.2 Second Example: Read TeSt......coovv i 43
5.3 Third Example: WItE TeSt........ueiieiiiiiiiiiiiiiiiiiiieiei ettt eeeeeaeeeensnnnnnannnn s 43
6 TE_USB_FX2_CyUSB.dII:
Data Transfer Throughput Optimization...............cccooe e, 44
6.1 INtrOdUCHION. ... 44
6.2 XferSize (driver buffer size) INflUENCE...........oooiiiiii 44

6.3 PacketSize (transfer data size) Influence............ccccoeeeiiiiiiiii s 44

S S 0% o e [1=1To) o PR TR
6.5 APPENdiX : ChartS.......ooooiiiiiiiiieeeeeeeeeeeee e

7 Document C
8 Bibliography

NANGE HISTOTY ...

1 Introduction

This document describes the API supported by standard Trenz Electronic FPGA modules equipped
with Cypress EZ-USB FX2 microcontroller (currently: TE0300, TE0320 and TE0630).

This document describes two different sets of API:

1. TE USB_FX2 CyUSB.dIl

2. API commands

C# applications use directly TE USB_FX2 CyUSB.dIl based on CyUSB.dll. To avoid copying
back and forth large amount of data between these two DLLs, data is passed by reference and not

by value.

Hardware / Firmware

Software

FPGA-MicroBlaze
(response to some APl commands)
Defined in MB_Commands

Sample application (C#)
(the programmer shall know
how to use APl commands)

FPGA to USB_FX2 communication

TE_USB_FX2_ CyUSB.dIl (C#)
(APl commands are inserted here in the
commands data array of byte)

CyUSB.dIl (C#)
(Cypress .NET DLL)

USB_FX2 Firmware
(able to execute APl commands and
send binary code responses)
Defined in FX2_Commands

TE_USB_FX2_ xx.sys
(derivative of CyUSB.sys:
Cypress EZ-USB FX2 driver derivate)

EndPoint USB FX2 Buffer
(APl commands are
a set of byte in the buffer)

Driver Buffer
(size determined by BufferSize parameter)
(API commands are
a set of byte in the buffer)

USB Cable and Tx/Rx Circuits

Hardware, firmware and software stack.

1.1 API Functions (First API Set)

The first set of API is a set of DLL functions mainly used to communicate between the host
computer and the EZ-USB FX2 microcontroller endpoints; this API uses the Cypress .NET
CyUSB.dII as a basis. In fact, one API function (namely TE USB FX2 SendCommand()) is able to
communicate with the MicroBlaze implemented on the FPGA.

These API functions have some parameters to set: Timeout , BufferSize and others.

1.1.1 Synchronous Functions

These functions use a synchronous version for the data transfer (Cypress XferData()). They perform
synchronous (i.e. blocking) I/O operations and do not return until the transaction completes or the
endpoint TimeOut has elapsed. A synchronous operation (aka blocking operation) is an operation
that owns (in an exclusive way) resources and CPU until its job is done. A synchronous function
monopolizes resources until its end, even during idle time.

If the program wuses the synchronous XferData() function (both in C# with
TE USB_FX2 CyUSB.dIl and C++ with TE USB FX2 CyAPI.dll), the array of data to transfer is
the only one that is subdivided into packets (with packet length < MaxPktSize = 512 byte) and
scheduled over the USB buffer for data transmission. Until the data array is completely transferred,
no other data array can be scheduled into packets over the USB, even if there is free packet time to
be used by other data. The array of data passed to the XferData() function is the only owner of the
USB bus until all data of this array are transferred (successfully or unsuccessfully). While using
XferData() method, the OS will schedule the next XferData() only after the previous XferData()
completes, leading to delay.

XferData() just calls asynchronous functions BeginDataXfer(), WaitForXfer() and FinishDataXfer()
in sequence and does error handling accordingly. WaitForXfer() is the one which implements the
timeout period for larger transfers. Cypress recommends the following: “You will usually want to
use the synchronous XferData method rather than the asynchronous BeginDataXfer / WaitForXfer /
FinishDataXfer approach.”.

The API uses the synchronous version because it is more suitable to be included in a DLL and it is
already fast. With synchronous version, the API functions are simpler to use.

1.1.2 Timeout Setting

Timeout is the time that is allowed to the function for sending/receiving the data packet passed to
the function; this timeout shall be large enough to allow the data/command transmission/reception.
Otherwise the transmission/reception will fail.

TimeOut shall be set according to the following formula:
TimeOut (ms) = [DataLength / DataThroughput] + 1 ms.
Note: TimeOut is integer so you shall round up the result.

For write transactions, assume DataThroughput =~ 20 Mbyte/s (it is lower than actual value, give
some margin).

For read transactions, assume DataThroughput = 30 Mbyte/s (it is lower than actual value, give
some margin).

For SendCommand() assume DataThroughput = 1 Mbyte/s (close to actual value).

These values have been verified for a Core 17 processor at 2.20 GHz with Microsoft Windows 7.
Other configuration may require others value. An AMD Athlon II at 1.30 GHz with Microsoft
Windows 7 might require much (e.g. two or three times) larger values. If your host computer is not
highly responsive, you should set TimeOut to even larger values : e.g 20, 50, 200, 1000 ms (the less
responsive the host computer is, the higher the recommended values shall be).

1.1.3 BufferSize (also called XferSize)

BufferSize is the size of the buffer used in data/command transmission/reception of a single
endpoint; the total buffer size is the sum of BufferSize of every endpoint used. See section 6
TE USB FX2 CyUSB.dIl: Data Transfer Throughput Optimization for some insights into this
kind of influence

BufferSize has a strong influence on DataThroughput. If BufferSize is too small, the
DataThroughput can be 1/3 to 1/2 of the maximum value (36 Mbyte/s for read and 25 Mbyte/s for
write transactions). If the BufferSize has a large value (a roomy buffer), the application should be
able to cope with the non-deterministic behavior of C# without losing packets.

1.1.4 PacketSize

PacketSize is the size of packets used in data/command transmission/reception of a single endpoint.
See section 6 TE USB FX2 CyUSB.dll: Data Transfer Throughput Optimization for further
insights on this influence.

PacketSize has also a strong influence on DataThroughput. If PacketSize is too small (512 byte for
example) you can achieve very low data throughput (2.2 Mbyte/s) even if you use a large
BufterSize (driver buffer size = 131,072 byte).

1.2 MicroBlaze API Commands (Second API Set)

The second set of API is API commands. They are binary data that are sent/received by the EZ-USB
FX2 microcontroller. API commands provide an easy way to create a communication interface with
Trenz Electronic FPGA modules.

API commands are sent using a function of the first API set: TE USB FX2 SendCommand(). This
function is able to pass the API commands (of the second API set) to the MicroBlaze embedded
processor and receive the response binary code of using endpoint EP1.

A combination of TE_ USB FX2 SendCommand() and TE USB FX2 GetData() functions is able
to read data from FPGA RAM.

A combination of TE USB_FX2 SendCommand() and TE USB FX2 SetData() functions is able
to write data to FPGA RAM.

2 Requirements

When using TE USB FX2 CyUSB.dll API, a host computer should meet the following
requirements:

* Operating system: Microsoft Windows 2000, Microsoft Windows XP, Microsoft Windows
Vista, Microsoft Windows 7

e USB driver: Trenz Electronic USB FX2 driver
¢ Interface: USB 2.0 host
¢ NET Framework version > 4.0.30319

See your module user manual for dedicated driver installation instructions.

3 API Functions

In order to provide a wuser interface for driver functions, dynamic link library
TE USB FX2 CyUSB.dIl and CyUSB.dll have been used. User program should load these
libraries and initialize module connection to get access to API functions. To do this, you shall:

1. copy TE_USB FX2 CyUSB.dIl and CyUSB.dll to the project folder (for example
TE-USB-Suite/TE_USB FX2 SampleApplication/TE_USB FX2 SampleApplication/);

2. open the C# project (double click the TE USB_FX2 CyUSB_SampleApplication icon in
the folder
TE-USB-Suite/TE_USB FX2 CyUSB_SampleApplication/);

3. open "Explore Solution" if it is not already open (Ctrl+W or left click "Visualize > Explore
Solution");

4. 1in the right panel "Explore Solution", right click "Reference";
5. select "Add Reference". A new window (Add Reference) opens;

6. select the fourth sheet (Browse). The term "Look In" shall have automatically selected the
correct folder
(TE-USB-Suite/TE_USB_FX2 SampleApplication/). If is not so, you shall select the folder
where you have copied the previous DLLs;

7. left click one of the two DLLs;

8. select OK;

9. repeat steps from 4 to 8 for the second DLL.
Exported function list:

* TE USB FX2 ScanCards()

* TE USB FX2 Open()

* TE USB _FX2 Close()

* TE USB FX2 SendCommand()

* TE USB FX2 GetData()

* TE USB FX2 SetData()

3.1 TE_USB_FX2_ScanCards()

3.1.1 Declaration

public static int TE USB FX2 ScanCards (
ref USBDevicelList USBdevList)

3.1.2 Function Call
Your application program shall call this function like this:
TE_USB_FX2.TE_USB_FX2.TE_USB_FX2_ScanCards(ref USBdevList);

3.1.3 Description

This function takes (a null initialized or an already initialized) USB device list, (re-)creates a
USB device list, searches for Trenz Electronic USB FX2 devices (Cypress driver derivative and
VID = 0xbd0, PID=0x0300) devices and counts them.

This function returns the number of Trenz Electronic USB FX2 devices attached to the
USB bus of the host computer.

3.1.4 Parameters
1. ref USBDeviceList USBdevList
USBDeviceList is a type defined in CyUSB.dII.

USBdevList is the list of devices served by the CyUSB.sys driver (or a derivative like
TE USB_FX2.sys). This parameter is passed by reference (ref). See page 139-140 of
CyUSB.NET.pdf (Cypress CyUSB .NET DLL Programmer's Reference).

3.1.5 Return Value
1. int: integer type.

This function returns the number of USB devices attached to the host computer USB bus.

3.2 TE_USB_FX2_Open()

3.2.1 Declaration

public static bool TE USB FX2 Open (
ref CyUSBDevice TE USB FX2 USBDevice, ref USBDeviceList
USBdevList, int CardNumber)

3.2.2 Function Call
Your application program shall call this function like this:

TE USB FX2.TE USB FX2.TE USB FX2 Open
(ref TE_USB_FX2 USBDevice, ref USBdevList, CardNumber);

3.2.3 Description

This function takes (a null initialized or an already initialized) USB device list, (re-)creates a USB
device list , searches for Trenz Electronic USB FX2 devices (Cypress driver derivative and VID =
0xbd0, PID=0x0300) and counts them.
If no device is attached, TE USB FX2 USB device (CyUSBDevice type) is initialized to null.
If one or more devices are attached and
e if 0 < CardNumber < (number of attached devices — 1), then
TE USB FX2 USBDevice (CyUSBDevice type) will point to and will be initialized
according to the selected device.
¢ if CardNumber > number of attached devices, then
TE USB FX2 USBDevice (CyUSBDevice type) is initialized to null.
A more intuitive name for this function would have been TE_ USB FX2 SelectCard().

3.2.4 Parameters
1. ref CyUSBDevice TE USB FX2 USBDevice

TE USB_FX2 USBDevice is the module selected by this function. This is the most useful
value returned by this function. This parameter is passed by reference (ref). See pages 70-93
of CyUSB.NET.pdf (Cypress CyUSB .NET DLL Programmer's Reference).

2. ref USBDeviceList USBdevList

USBDeviceList is a type defined in CyUSB.dIl. USBdevList is the list of devices served by
the CyUSB.sys driver (or a derivative like TE USB_FX2.sys). This parameter is passed by
reference (ref). See page 139-140 of CyUSB.NET.pdf (Cypress CyUSB .NET DLL

Programmer's Reference)
3. int CardNumber
This is the number of the selected Trenz Electronic USB FX2 device.

3.2.5 Return Value
1. bool : logical type

This function returns true if it is able to find the module selected by CardNumber. If unable
to do so, it returns false.

3.3 TE_USB_FX2_Close()

3.3.1 Declaration
public static bool TE USB FX2 Close(ref USBDeviceList USBdevList)

3.3.2 Function Call
Your application program shall call this function like this:

TE USB FX2.TE USB_FX2.TE USB FX2 Close
(ref USBdevList);

3.3.3 Description
This function takes an already initialized USB device list and disposes it.

Due to the fact that we are coding C# here, the device list can or cannot be erased; this is in the
scope of the garbage collector and it cannot be forced by the user. Sometimes it is erased instantly,
some other times it is never erased, until the user closes the application program that uses this data.

Use of TE_USB FX2 Close() function is NOT recommended for new software projects. Users may
use this function only just before exiting their applications. If users use this function anywhere else,
they shall

* manage System.ObjectDisposedException exceptions (try — catch) or
* avoid using disposed resources.
Note: USBdevList is disposed, not set to null.

try
{
Application Code
}
catch (System.ObjectDisposedException)

{
Console.WriteLine ("TE USB FXZ2 USBDevice disposed: you have used

the wrong procedure!");

}

If you want to close the current USB device (card) without opening another one, you shall use
TE USB_FX2 Open() with a device number (CardNumber) that certainly does not exist (e.g.
CardNumber = 200, because there can be a maximum of 127 USB devices connected to a single
host controller). The reason of this behavior is due to the CyUSB.dll as explained by Cypress
document CyUSB.NET.pdf, pages 132-133 and pages 139-140: “You should never invoke the
Dispose method of a USBDevice directly. Rather, the appropriate technique is to call the Dispose
method of the USBDeviceList object that contains the USBDevice objects”

This function differs from its homonym of the previous TEO300DLL.dIl in that it does not close a
Handle but disposes (erases) all USB devices in the list.

A more intuitive name for this function would have been TE USB FX2 CloseAll or
TE USB FX2 Dispose.

3.3.4 Parameters
1. ref USBDeviceList USBdevList

USBDeviceList is a type defined in CyUSB.dIl. USBdevList is the list of Trenz Electronic
USB FX2 devices attached to the USB bus host computer. This parameter is passed by
reference (ref). See page 139-140 of CyUSB.NET.pdf (Cypress CyUSB .NET DLL
Programmer's Reference).

3.3.5 Return Value
1. bool : logical type

This function returns true if it is able to dispose the list. If unable to do so, it returns false.

3.4 TE_USB_FX2_SendCommand()

3.4.1 Declaration

public static bool TE USB FX2 SendCommand(ref CyUSBDevice
TE USB _FX2 USBDevice, ref byte[] Command, ref int CmdLength, ref
byte[] Reply, ref int ReplyLength, uint Timeout)

3.4.2 Function Call
Your application program shall call this function like this:

TE USB _FX2.TE USB FX2.TE USB FX2 SendCommand
(ref TE_USB FX2 USBDevice, ref Command, ref CmdLength, ref Reply, ref ReplyLength,
Timeout);

3.4.3 Description

This function takes an already initialized USB device (previously selected by

TE USB_FX2 Open()) and sends a command (API command) to the USB FX2 microcontroller
(USB FX2 API command) or to the MicroBlaze embedded processor (MicroBlaze API command)
through the USB FX2 microcontroller endpoint EP1 buffer.

This function is normally used to send 64 bytes packets to the USB endpoint EP1 (0x01).

This function is also able to obtain the response of the USB FX2 microcontroller or MicroBlaze
embedded processor through the USB FX2 microcontroller endpoint EP1 (0x81).

3.4.4 Parameters
1. ref CyUSBDevice TE USB-FX2 USBDevice

CyUSBDevice is a type defined in CyUSB.dIl. This parameter points to the module selected
by TE USB _FX2 Open(). This parameter is passed by reference (ref). See pages 70-93 of
CyUSB.NET.pdf (Cypress CyUSB .NET DLL Programmer's Reference)

2. ref byte[] Command

This parameter is passed by reference (ref). It is the byte array that contains the commands
to send to USB FX2 microcontroller (FX2 Commands) or to the MicroBlaze embedded
processor (MB_Commands).

The byte array shall be properly initialized using instructions similar to the following ones:

Command[0] (byte) FX2 Commands.I2C WRITE;
Command[1l] = (byte)FX2 Commands.MB I2C ADDRESS;
Command[2] = (byte)FX2 Commands.I2C BYTES;
Command[3] = (byte)0;

Command[4] = (byte)0;

Command[5] = (byte)O0;

Command[6] = (byte)Command2MB;

3. refint CmdLengt

This parameter (passed by reference (ref)) is the length (in bytes) of the previous byte array;
it is the length of the packet to transmit to USB FX2 controller endpoint EP1 (0x01). It is
typically initialized to 64 bytes.

4. refbyte[] Reply

This parameter (passed by reference (ref)) is the byte array that contains the response to the

command sent to the USB FX2 microcontroller (FX2 Commands) or to the MicroBlaze
embedded processor (MB_Commands).

5. refint ReplyLength

This parameter (passed by reference (ref)) is the length (in bytes) of the previous byte array;
it is the length of the packet to transmit to the USB FX2 microcontroller endpoint EP1
(0x81). It is typically initialized to 64 byes, but normally the meaningful bytes are less. The
parameter is a reference, meaning that the method can modify its value. The number of
bytes actually received is passed back in ReplyLength.

6. uint Timeout

The unsigned integer value is the time in milliseconds assigned to the synchronous method
XferData() of data transfer used by CyUSB.dII.

Timeout is the time that is allowed to the function for sending/receiving the data packet
passed to the function; this timeout shall be large enough to allow the data/command
transmission/reception. Otherwise the transmission/reception will fail. See 1.1.2 Timeout
Setting.

3.4.5 Return Value
1. bool : logical type

This function returns true if it is able to send a command to EP1 and receive a response
within 2*Timeout milliseconds. This function returns false otherwise.

3.5 TE_USB_FX2_GetData()

3.5.1 Declaration

public static bool TE USB FX2 GetData (
ref CyUSBDevice TE USB FX2 USBDevice, ref byte[] DataRead, ref
int DataReadLength, int PipeNo, uint Timeout, int BufferSize)

3.5.2 Function Call
Your application program shall call this function like this:

TE USB FX2.TE USB FX2.TE USB FX2 GetData
(ref TE_USB_FX2 USBDevice, ref DataRead, ref DataReadLength, PI_EP6, Timeout,
BufferSize);

3.5.3 Description

This function takes an already initialized USB Device (previously selected by

TE USB FX2 Open()) and reads data from USB FX2 microcontroller endpoint EP6 (0x86)
(endpoints EP4(0x84) or EP2(0x82) are also theoretically possible). Data comes from the FPGA.
Currently (April 2012), only endpoint 0x86 is actually implemented in Trenz Electronic USB FPGA
modules, so that endpoints EP2 and EP4 cannot be read or , more precisely, they are not even
connected to the FPGA. That is why attempting to read them causes a function failure after Timeout
expires.

3.5.4 Expected Data Throughput

The maximum data throughput expected (with a DataReadLength= 120*1076) is 37 Mbyte/s
(PacketSize = BufferSize = 131,072), but in fact this value is variable between 31-36 Mbyte/s (the
mean value seems 33.5 Mbyte/s); so if you measure this range of values, the data reception can be
considered as normal.

The data throughput is variable in two ways:
1. depends on the used host computer;

2. varies with every function call.

3.5.5 DataRead Size Shall Not Be Too Large

TE USB_FX2 GetData() seems unable to use too large arrays or, more precisely, this fact seems
variable by changing host computer. To be safe, do not try to transfer in a single packet very large
data (e.g. 120 millions of byte); transfer the same data with many packets instead (1,200 packets *
100,000 byte) and copy the data in a single large data array if necessary (with Buffer.BlockCopy()).
Bufter.BlockCopy seems not to hinder throughput too much (max 2 Mbyte/s)

3.5.5.1 Reduced version (pseudo code)

PACKETLENGTH=100000;

packets=1200;

bytel[] data = new byte[packetlen*packets];
bytel] buffer = new byte[packetlen];

for (int i = 0; i < packets; i++)

{

TE USB _FX2 GetData (ref TE USB FX2 USBDevice, ref buffer, ref
packetlen, PI EP6, TIMEOUT MS,BUFFER SIZE)

Buffer.BlockCopy (buffer, 0, data, total cnt, packetlen);

total cnt += packetlen;
}

3.5.5.2 Expanded version (code)

PACKETLENGTH=100000;

packets=1200;

bytel[] data = new byte[packetlen*packets];
byte[] buffer = new byte[packetlen];

//starts test: the FPGA start to write data in the buffer EP6 of
FX2 chip

SendFPGAcommand (ref TE USB FX2 USBDevice,

MB Commands.FX22MB REGO START TX, TIMEOUT MS);

test cnt = 0;
total cnt = 0;
for (int 1 = 0; i < packets; i++)
{
//buffer = &datal[total cnt];
packetlen = PACKETLENGTH;
//fixed (byte* buffer = &datal[total cnt])
bResultXfer = TE USB FX2.TE USB FX2.TE USB FX2 GetData (ref
TE USB _FX2 USBDevice, ref buffer, ref packetlen, PI EPG,
TIMEOUT MS,BUFFER SIZE);
Buffer.BlockCopy (buffer, 0, data, total cnt, packetlen);
if (bResultXfer == false)
{
//cout << "ERROR" << endl;
Console.WriteLine ("Error Get Data");
SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO STOP, TIMEOUT MS) ;
return;
}
total cnt += packetlen;
}
//stop test: the FPGA start to write data in the buffer EP6 of
//FX2 chip
SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB_REGO STOP, TIMEOUT MS) ;

3.5.6 DataRead Size Shall Not Be Too Small

There are two reasons why DataRead size shall not be too small.

The first reason is described in section 1.1.4 PacketSize. PacketSize has also a strong influence on
DataThroughput. If PacketSize is too small (e.g. 512 byte), you can have very low DataThroughput
(2.2 Mbyte/s) even if you use a large driver buffer (driver buffer size = 131,072 bytes). See section
6 TE USB FX2 CyUSB.dll: Data Transfer Throughput Optimization.

The second reason is that probably the FPGA imposes your minimum packet size. In a properly
used read test mode (using FX22MB REGO START TX and therefore attaching the FPGA),
TE USB_FX2 GetData() is unable to read less than 1024 byte. In a improperly used read test mode
(not using FX22MB REGO START TX and therefore detaching the FPGA),
TE USB FX2 GetData() is able to read a packet size down to 64 byte. The same CyUSB method
XferData() used (under the hood) in TE USB_FX2 SendCommand() is able to read a packet size
of 64 byte. These facts prove that the minimum packet size is imposed by FPGA. To be safe, we
recommend to use this function with a size multiple of 1 kbyte.

3.5.7 Parameters
1. ref CyUSBDevice TE USB-FX2 USBDevice

This parameter points to the module selected by TE USB FX2 Open(). This parameter is
passed by reference (ref). See pages 70-93 of CyUSB.NET.pdf (Cypress CyUSB .NET DLL
Programmer's Reference)

2. refbyte[] DataRead

This parameter 1is passed by reference (ref). C# applications use directly
TE USB FX2 CyUSB.dIl based on CyUSB.dIl. To avoid copying back and forth large
amount of data between these two DLLs, data is passed by reference rather than by value.
This parameter points to the byte array that, after the function returns, will contain the data
read from the buffer EP6 of the USB FX2 microcontroller. The data contained in EP6
generated by the FPGA. If no data is contained in EP6, the byte array is left unchanged.

3. refint DataReadLength

This parameter is the length (in bytes) of the previous byte array; it is the length of the
packet read from the USB FX2 microcontroller endpoint EP6 (0x86). It is typically
PacketLength. This parameter is passed by reference (ref).

4. int PipeNumber

This parameter is the value that identifies the endpoint used for data transfer. It is called
PipeNumber because it identifies the buffer (pipe) used by the USB FX2 microcontroller.

5. uint Timeout

It is the integer time value in milliseconds assigned to the synchronous method XferData()
of data transfer used by CyUSB.dIL. Timeout is the time that is allowed to the function for
sending/receiving the data packet passed to the function; this timeout shall be large enough
to allow data/command transmission/reception.. Otherwise the transmission/reception will
fail. See 1.1.2 Timeout Setting.

6. int BufferSize

It is the dimension (in bytes) of the driver buffer (SW) used in data reception of a single
endpoint (EP6 0x86 in this case)single endpoint (EP6 0x86 in this case); the total buffer
size is the sum of BufferSize of every endpoint used. BufferSize has a strong influence on
DataThroughput. If the BufferSize is too small, DataThroughput can be 1/3-1/2 of the
maximum value (from a maximum value of 36 Mbyte/s for read transactions to an actual
value of 18 Mbyte/s). If BufferSize has a large value (a roomy buffer), the program shall be
able to cope with the non-deterministic behavior of C# without losing packets.

3.5.8 Return Value
1. bool : logical type

This function returns true if it is able to receive the data from buffer EP6 within Timeout
milliseconds. This function returns false otherwise.

3.6 TE_USB_FX2_SetData()

3.6.1 Declaration

public static bool TE USB FX2 SetData (ref CyUSBDevice
TE USB_FX2 USBDevice, ref byte[] DataWrite, ref int
DataWritelength, int PipeNo, uint Timeout, int BufferSize)

3.6.2 Function Call
Your application program shall call this function like this:

TE USB FX2.TE USB FX2.TE USB FX2 SetData
(ref TE_USB_FX2 USBDevice, ref DataWrite, ref DataWriteLength, PI_EP8, Timeout,
BufferSize);

3.6.3 Description

This function takes an already initialized USB device (CyUSBDevice is a type defined in
CyUSB.dIll), selected by TE USB FX2 Open(), and writes data to the USB FX2 microcontroller
endpoint EP8 (0x08). This data is then passed to the FPGA.

If there is not a proper connection (not using FX22MB REGO START RX) between FPGA and
USB FX2 microcontroller, the function can experience a strange behavior. For example, a very low
throughput (9-10 Mbyte/s even if a 22-24 Mbyte/s are expected) is measured or the function fails
returning false. These happen because buffer EP8 (the HW buffer, not the SW buffer of the driver
whose size is given by BufferSize parameter) is already full (it is not properly read/emptied by the
FPGA) and no longer able to receive further packets.

3.6.4 Data throughput expected

The maximum data throughput expected (with a DataWriteLength= 120*1076) is 24 Mbyte/s
(PacketSize = BufferSize =131,072) but in fact this value is variable between 22-24 Mbyte/s (the
mean value seems 24 Mbyte/s); so if you measure this range of values, the data reception can be
considered normal.

The data throughput is variable in two way:

1. depends on which host computer is used (on some host computers this value is even higher:
29 Mbyte/s)

2. vary with every function call

3.6.5 DataWrite size shall not be too large

TE USB_FX2 SetData() seems unable to use too large arrays or, more precisely, this fact seems
variable by changing host computer. To be safe, do not try to transfer in a single packet very large
data (120 millions of byte); transfer the same data with many packets (1,200 packets * 100,000
byte) and copy the data in a single large data array if necessary (with Buffer.BlockCopy()).
Buffer.BlockCopy seems not to hinder throughput too much (max 2 Mbyte/s).

3.6.5.1 Reduced version (pseudo code)

PACKETLENGTH=100000;
packets=1200;

byte[] data = new byte[packetlen*packets];
bytel] buffer = new byte[packetlen];

for

{

(int 1 = 0; 1 < packets; i++)

Buffer.BlockCopy (data, total cnt, buffer, 0, packetlen);

TE USB FX2 SetData(ref TE USB FX2 USBDevice, ref buffer, ref
packetlen, PI_EPS, TIMEOUT_MS,BUFFER_SIZE);
total cnt += packetlen;

}

3.6.5.2 Expanded version (code)

SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO START RX, TIMEOUT MS);

//ElapsedTime.Start (); //StopWatch start
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start () ;

for

{

(int 1 = 0; 1 < packets; i++)

packetlen = PACKETLENGTH;
Buffer.BlockCopy (data, total cnt, buffer, 0, packetlen);

if

(TE_USB_FX2.TE_USB_FX2.TE_USB_FX2 SetData (ref

TE USB FX2 USBDevice, ref buffer, ref packetlen, PI EPS,
TIMEOUT MS, BUFFER SIZE) == false) errors++;
else total cnt += packetlen;

}

//total cnt += (packetlen * packets);
stopWatch.Stop () ;

3.6.6 DataWrite size shall not be too small

The reason is described in section 1.1.4 PacketSize.

PacketSize has also a strong influence on DataThroughput. If PacketSize is too small (512 byte for
example) you can achieve very low data throughput (2.2 Mbyte/s) even if you use a large driver
buffer (driver buffer size = 131,072 byte). See 6 TE USB FX2 CyUSB.dll: Data Transfer
Throughput Optimization.

3.6.7 Parameters

1.

2.

ref CyUSBDevice TE_USB-FX2 USBDevice

This parameter is passed by reference (ref). It points to the module selected by
TE USB _FX2 Open(). See pages 70-93 of CyUSB.NET.pdf (Cypress CyUSB .NET DLL
Programmer's Reference)

ref byte[] DataWrite

This parameter is passed by reference (ref). C# applications use directly
TE USB_FX2 CyUSB.dIl based on CyUSB.dIl. To avoid copying back and forth large
amount of data between these two DLLs, data is passed by reference and not by value.

This parameter points to the byte array that contains the data to be written to buffer EP8

(0x08) of USB FX2 microcontroller. Data contained in EPS§ are then read by the FPGA.
3. ref int DataWriteLength

This parameter is passed by reference (ref). This parameter is the length (in bytes) of the
previous byte array; it is the length of the packet read from FX2 USB endpoint EP6 (0x86).
Normally it is PacketLength.

4. int PipeNumber

This parameter is the value that identify the endpoint used for the data transfer. It is called
PipeNumber because it identifies the buffer (pipe) used by the USB FX2 microcontroller.

5. uint Timeout.

The unsigned integer value is the time in milliseconds assigned to the synchronous method
XferData() of data transfer used by CyUSB.dII.

Timeout is the time that is allowed to the function for sending/receiving the data packet
passed to the function; this timeout shall be large enough to allow the data/command
transmission/reception. Otherwise the transmission/reception will fail. See 1.1.2 Timeout
Setting.

6. int BufferSize

The integer value is the dimension (in bytes) of the driver buffer (SW) used in data
transmission of a single endpoint (EP8 0x08 in this case); the total buffer size is the sum of
all BufferSize of every endpoint used.

The BufferSize has a strong influence on DataThroughput. If BufferSize is too small,
DataThroughput can be 1/3-1/2 of the maximum value (from a maximum value of 24
Mbyte/s for write transactions to an actual value of 14 Mbyte/s). If BufferSize has a large
value (a roomy buffer), the program shall be able to cope with the non-deterministic
behavior of C# without losing packets.

3.6.8 Return Value
1. bool: logical type

This function returns true if it is able to write data to buffer EP8 within Timeout
milliseconds. This function returns false otherwise.

4 API Commands

4.1 Introduction

This introduction has been taken from "TE03xx Series Application Notes".

4.1.1 Reference Architecture

The Xilinx FPGA itself on the Trenz Electronic USB FX2 family by default is blank and has no
architecture. To define an FPGA functionality, a logic architecture should be defined and loaded
into the device. The reference design system was built using Xilinx Embedded Development Kit
(EDK). Basically, it is an embedded system with a MicroBlaze 32-bit soft microprocessor. The
MicroBlaze initializes and sets up the system. The XPS I2C SLAVE block sends commands
coming from the USB bus towards the MicroBlaze processor (low speed communication channel).
The horsepower for high bandwidth data streaming is a Multiport Memory Controller (MPMC). A
custom-built DMA (direct memory access) engine (XPS NPI DMA) streams data between multiple
sources and external RAM simultaneously. Standard EDK cores are used to implement a serial
interface (XPS UARTLITE), an SPI FLASH interface (XPS SPI), a timer / counter block
(XPS_TIMER) and an interrupt controller (XPS _INTC).

When data is sent from the USB-host to the USB FX2 family high-speed endpoint (high speed
communication channel), it is automatically stored into the RAM by the DMA at a specified buffer
location. The reference design software running on the MicroBlaze verifies the transferred data at
the end of transmission and sends to the USB host a notification about the data test (pass/fail).

When data is sent form the Trenz Electronic USB FX2 family high-speed endpoint to the USB host,
it is automatically fetched from the RAM via the DMA engine and forwarded to the XPS FX2 core
in 1-kbyte packets. MicroBlaze does the throttling to prevent XPS FX2 TX FIFO overflow.

4.1.2 Custom Logic Block

The instructions contained in this document can be applied to all reference designs. Besides
standard IP cores, they contain three custom IP cores:

1. XPS NPI DMA
2. XPS_FX2
3. XPS I2C_SLAVE

XPS _NPI_DMA is a high speed DMA (direct memory access) engine which connects to the
MPMC (Multi-Port Memory Controller) VFBC (Video Frame Buffer Controller) port. It enables
high speed data streaming to/from external memory (DDR SDRAM). It can be controlled by a
processor using 6 x 32-bit memory mapped registers attached to the PLB (peripheral local bus). For
more information about registers, see the Xilinx MPMC Product Specification (mpme.pdf), "Video
Frame Buffer Controller PIM" section .

XPS _FX2 is a logic block for high speed bidirectional communication between the FPGA and a
host PC. It contains two 2 kB FIFOs for data buffering. For more information about the 5 x 32-bit
memory mapped registers see the #iproject_root#/pcores/xps_fx2 vl 00 _a/doc.

XPS _I2C_SLAVE is a logic block for low speed bidirectional communication between the FPGA
and a host PC. It is usually used for command, settings and status communication. It contains 6 x
32-bit memory mapped registers:

* 3 for PC -> FPGA communication (FX2MB regs)
* 3 for FPGA -> PC communication (MB2FX2 regs)

When the PC sends commands to the MicroBlaze (MB) soft embedded processor, an interrupt is
triggered. When the MB writes data to MB2FX2 reg0, the interrupt (INTO) is sent to the Cypress
EZ-USB FX2LP USB microcontroller. When the FX2 microcontroller receives an interrupt, it reads

all MB2FX2 regs.
s N
I" : 3\
E g E] XCL :
N = = X PIM
X : :
8 Micro3/aze s MPMC
9 ¢ 3 : DDR SDRAM DOR
5 - 2 XL :
ﬁ B 2 a PIM ; memary 1ébit SDRAM
.) IPLE DPLE musend controller
s L | / NPl !
PIM
\ :)
e
X " e,y
o —| | FPS-ARILITE e
XPS_NPI_DMA
ﬁ
1 E
XPS_TIMER I
)]
e E XPS_FX2 8-bit | FX2 USB
a —_— -
XPS_INTC %I i \
L I XPS_|2C_SLAVE
mm— —
5Pl
FLASH XPS_SPI

K—* - FPGA FABRIy

custom core ()

The commands described in Table 1 are binary data packets sent/received by the USB FX2
microcontroller through endpoint 1. Endpoint 1 accepts 64 byte packets with a predefined structure.
These command are sent using the API function TE_USB _FX2 SendCommand().

ID Name Description
0x00 |READ_VERSION Return 4 bytes representing FX2 firmware version
0xAO |INITIALIZE Initialize FX2 to initial state
0xAl |READ_STATUS Return 5 bytes of FX2 status
0xA4 |RESET FIFO Reset selected FX2 FIFO
0xA5 |FLASH READ Read data from SPI Flash
0xA6 |FLASH WRITE Write data to SPI Flash
0xA7 |FLASH ERASE Erase entire SPI Flash
0xA8 |EEPROM_ READ Read data from 12C EEPROM
0xA9 |EEPROM_WRITE Write data from [2C EEPROM
0xAC |FIFO STATUS Return FIFO status for all endpoints
0xAD |12C_WRITE Write data to 12C interface
0xAE |[I2C READ Read data from I12C interface
0xAF |POWER Control FPGA power supply
0xAA |FLASH WRITE COMMAND | Write SPI Flash command
0xBO |SET INTERRUPT Set parameters for interrupt handler
0xB1 |GET INTERRUPT Return interrupt statistic information

Table 1 : USB FX2 APl command list (commands accepted by the USB FX2
microcontroller firmware).

There are also some MicroBlaze commands that can be customized by users. Table 2 lists and
describes briefly the default MicroBlaze commands accepted by the default MicroBlaze embedded
processor implemented in Trenz Electronic USB FX2 FPGA modules.

ID Name Description
0x00 |[FX22MB_REGO NOP No operation
0x01 |[FX22MB_REGO GETVERSION |Return 4 bytes representing FPGA firmware version

0x02 |[FX22MB _REGO START TX Start read data integrity test of data transmitted from EP6
of FX2 to computer.

0x03 |[FX22MB_REGO_START RX Start write data integrity test of data transmitted from
computer to EP8 of FX2

0x04 | FX22MB _REGO_STOP Stop both the test started by 0x02 and 0x03

0x05 |[FX22MB_REGO_PING This command send a ping request. A “pong”
0x706F6E67 value shall be returned.

Table 2: MicroBlaze APl commands list.

Table 3 lists some important parameters used in FX2 API commands, in case they are required by a
MicroBlaze command.

ID Name Description

0x0C 12C BYTES Number of bytes (12)

0x3F MB 12C_ADDRESS | Address of MicroBlaze over I2C

Table 3: USB FX2 API parameter list.

When writing applications, users shall include, typically at the beginning of their programs, code
sections similar to the three following ones:

public enum FX2 Commands

{
READ VERSION = 0x00,
INITALIZE = 0xAQ,
READ STATUS = OxAl,
WRITE REGISTER = 0xA2,
READ REGISTER = 0xA3,
RESET FIFO STATUS = OxA4,
FLASH READ = OxA5,
FLASH WRITE = OxAo6,
FLASH ERASE OxA7,
EEPROM READ = O0xAS,
EEPROM WRITE = OxA9,
GET FIFO STATUS = OxAC,

I2C WRITE = OxAD

I2C_READ =

OxAE,

POWER ON = O0OxAF,
FLASH WRITE COMMAND = OxAA,
SET INTERRUPT = 0xBO,

’

GET INTERRUPT = 0xB1,
}i

public enum FX2 Parameters
{

I2C_BYTES = 0x0C,

MB I2C ADDRESS = 0x3F
}i

public enum MB Commands

{
FX22MB_REGO NOP = 0,
FX22MB REGO GETVERSION
FX22MB REGO START TX =
FX22MB_REGO START RX
FX22MB REGO STOP = 4,
FX22MB REGO PING = 5

b

w Nl
~

~

The byte array shall be properly initialized by using instructions similar to the following ones:

Command [0] (byte) FX2 Commands.I2C WRITE;
Command[1l] = (byte)FX2 Parameters.MB I2C ADDRESS;
Command[2] = (byte)FX2 Parameters.I2C BYTES;
Command[3] = (byte)O0;

Command[4] = (byte)0;
Command[5] (byte)0;
Command|[6] (byte) Command2MB;

4.2 USB FX2 API Commands
The first byte sent by TE_ USB_FX2 SendCommand() is the USB FX2 API Command.

4.2.1 READ_VERSION

This command returns 4 bytes representing the USB FX2 firmware version.

Byte Value Description

1 0x00 READ_VERSION command ID

From 2 to 64 - Not used

Table 4: READ_VERSION Command Packet Layout.

Byte Description

FX2 Firmware version major number

FX2 Firmware version minor number

Device Major Number

AW IN|~-

Device Minor Number

From 5 to 64 Not Used

Table 5: READ_VERSION Reply Packet Layout.

4.2.2 INITIALIZE

This command runs the USB FX2 initialization process.

Byte Value Description
1 0xAO0 INITIALIZE command ID
2 0x01 FIFO mode
From 3 to 64 - Not used

Table 6: INITIALIZE Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.3 READ_STATUS
This command returns 5 bytes representing the USB FX2 status.

Byte Value Description

1 O0xA1 READ_STATUS command ID

From 2 to 64 - Not used

Table 7: READ_STATUS Command Packet Layout.

Byte

Description

FIFO error

Current mode

Flash busy

FPGA program

AW IN| -

Booting

From 6 to 64

Not used

Table 8: READ_STATUS Reply Packet Layout.

4.2.4 RESET_FIFO

This command resets the FIFO of the selected endpoint (all endpoints if zero is selected).

Byte Value Description
1 0xA4 RESET_FIFO command ID
2 0/2/4/6/8 Endpoint number.
0 means all endpoints, not control endpoint.
From 3 to 64 - Not used

Table 9: READ_VERSION Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.5 FLASH_READ
This command reads data (from 1 to 64 bytes) from the requested SPI Flash address.

Byte Value Description
1 O0xAS FLASH_READ command ID
2 Sector Flash sector to read (address [23:16])
3 AddrHigh High part of address (address [15:8])
4 AddrLow Low part of address (address [7:0])
5 size Number of bytes to read (max 64)
From 6 to 64 - Not used

Table 10: FLASH_READ Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.6 FLASH_WRITE

This command writes data (from 1 to 59 bytes) to the requested SPI Flash address. Afterwards, it

writes USB FX2 firmware, reads back data from Flash and returns it in a reply packet.

Byte Value Description
1 OxA6 FLASH_WRITE command ID
2 Sector Flash sector to read (address [23:16])
3 AddrHigh High part of address (address [15:8])
4 AddrLow Low part of address (address [7:0])
5 size Number of bytes to read (max 59)
From 6 to size+5 data Data to write (size bytes)

From size+6 to 64

Not used

Table 11: FLASH_WRITE Command Packet Layout.

Byte

Description

From 1 to size

Readback result

From size to 64

Not used

Table 12: FLASH_WRITE Reply Packet Layout.

4.2.7 FLASH_ERASE

This command starts an entire Flash erase process. A full Flash erase process may take up to 30
seconds for M25PS32 SPI Flash chip (check your SPI Flash data sheet for actual time values). To
control Flash busy status, use READ STATUS command.

Byte

Value

Description

1

OxA7

FLASH _ERASE command ID

From 2 to 64

Not used

Table 13: FLASH_ERASE Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.8 EEPROM_READ
This command reads data (from 1 to 64 bytes) from requested EEPROM address.

Byte Value Description
1 0xA8 EEPROM_READ command ID
2 AddrHigh High part of address (address [15:8])
3 AddrLow Low part of address (address [7:0])
4 size Number of bytes to read (max 64)
From 5 to 64 - Not used

Table 14: EEPROM_READ Command Packet Layout.

Reply packet contains requested data.

4.2.9 EEPROM_WRITE

This command writes data (from 1 to 60 bytes) to the requested EEPROM address. Afterwards, it
writes USB FX2 firmware, reads back data from EEPROM and returns it in a reply packet.

Byte Value Description
1 0xA9 EEPROM_WRITE command ID
2 AddrHigh High part of address (address [15:8])
3 AddrLow Low part of address (address [7:0])
4 size Number of bytes to write (max 60)
From 5 to size+4 data Data to write (size bytes)

From size+5 to 64

Not used

Table 15: EEPROM_WRITE Command Packet Layout.

Byte

Description

From 1 to size

Readback result

From size to 64

Not used

Table 16: EEPROM_WRITE Reply Packet Layout.

4.2.10 FIFO_STATUS

This command returns the FIFO status of all used endpoints. Status is the value of EP2CS, EP4CS,
EP6CS and EP8CS USB FX2 registers. See USB FX2 documentation for detailed information.

Byte Value Description
1 OxAC FIFO_STATUS command ID
From 2 to 64 - Not used
Table 17: FIFO_STATUS Command Packet Layout.
Byte Description
1 FX2 EP2CS Register value
2 FX2 EP4CS Register value
3 FX2 EP6CS Register value
4 FX2 EP8CS Register value
From 5 to 64 Not used

Table 18: FIFO_STAUS Reply Packet Layout.

4.2.11

I2C_WRITE

This command writes data (from 1 to 32 bytes) to the requested [2C address.

Byte Value Description
1 OxAD [2C_WRITE command ID
2 Address I2C Address
MB_I2C_ADDRESS=0x3F
3 size Number of bytes to write (max 32)
From 4 to size+3 data Data to write (size bytes)
From size+4 to 64 |- Not used

Table 19: 12C_WRITE Command Packet Layout.

Reply packet doesn't contain any usable information.

4212 12C_READ
This command reads data (from 1 to 32 bytes) from the requested 12C address.

Byte Value Description
1 OxAE I2C_READ command ID
2 Address I2C Address
3 size Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 20: EEPROM_WRITE Command Packet Layout.

Reply packet contains requested data.

4213 POWER
This command controls some FPGA power supply sources.
Byte Value Description
1 OxAF POWER command ID
2 power 0 = Power OFF state, 1 = Power ON state
From 3 to 64 - Not used
Table 21: POWER Command Packet Layout.
Byte Description
1 0 = Power OFF state, 1 = Power ON state
From 2 to 64 Not used

Table 22: POWER Reply Packet Layout.

4214 FLASH_WRITE_COMMAND
This command sends instructions to the SPI Flash. See SPI Flash data sheet for detailed command

description.

Byte Value Description
1 OxAA FLASH_WRITE_COMMAND command ID
2 Write length Write command length
3 Read length Read command length
From 4 to write command Write command
length +3

From write length+4
to 64

Not used

Table 23: FLASH_WRITE _COMMAND Command Packet Layout.

Byte

Description

From 1 to read
length

SPI Data Out sequence

From read length
+1 to 64

Not used

Table 24: FLASH_WRITE_COMMAND Reply Packet Layout.

4.2.15 SET_INTERRUPT

This command sets address and number of bytes to read from 12C bus when interrupt request is

received.
Byte Value Description
1 0xBO SET_INTERRUPT command ID
2 Address |I2C Address
MB _12C_ADDRESS=0x3F
3 size Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 25: SET_INTERRUPT Command Packet Layout.

Reply packet doesn't contain any usable information.

4.2.16 GET_INTERRUPT

This command pulls the number of received interrupts and received data (number of bytes set by
SET INTERRUPT command) from the USB FX2.

Byte

Value

Description

1

0xB1

GET_INTERRUPT command ID

From 2 to 64

Not used

Table 26: GET_INTERRUPT Command Packet Layout.

Byte Description

1 Interrupt number

been serviced.

Zero means that GET_INTERRUPT has not been able to retrieve
data because the interrupt created by SET_INTERRUPT has not yet

From 2 to size+1 Interrupt data

From size+2 to 64 |Not used

Table 27: GET_INTERRUPT Reply Packet Layout.

4.3 MicroBlaze API Commands

These commands differ from USB FX2 API commands because they are executed by the
MicroBlaze and shall be sent with the 2C_WRITE USB FX2 API command; more precisely, after
it in the Command byte array. [2C_WRITE USB FX2 API command (with the Commmand byte
array) is itself a parameter of USB FX2 API function TE USB_FX2 SendCommand().

The byte array shall be properly initialized using instructions similar to the ones listed below:

byte) FX2 Commands.I2C WRITE;

[(
Command[1l] = (byte)FX2 Parameters. MB I2C _ADDRESS;
Command[2] = (byte)FX2 Parameters. 12C _BYTES;
Command[3] = (byte)0;
Command([4] = (byte)O0;
Command[5] = (byte)0;
Command[6] = (byte)Command2MB;

Command2MB it is one of the commands listed in Table 2. This command writes data (from 1 to 32

bytes) to the requested 12C address.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 0x3F |I2C Address
MB_I12C_ADDRESS=0x3F

3 0x0C FX2 Parameters.]2C_BYTES=0x0C
(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 Command2MB MB_Commands to send to the MicroBlaze

From 8 to 64 - Not used

Table 28: MB_Command Packet Layout.

Reply packet doesn't contain any usable information.

4.3.1 FX22MB_REGO0_NOP

This command is used as No Operation.

4.3.2 FX22MB_REGO_GETVERSION

This command is used to request the FPGA firmware version. This function is not able to return
directly 4 bytes representing the FPGA firmware version. The procedure requested is the following:

1. SET INTERRUPT on MB_I2C_ADDRESS requesting I2C_BYTES
2. 12C_WRITE with MB_Command FX22MB_REG0O GETVERSION at byte 7
3. GET INTERRUPT

4.3.2.1 Code Form
/[1)SET_INTERRUPT on MB_12C_ADDRESS requesting 12C_BYTES

Command[0] = (byte)FX2 Commands.SET INTERRUPT;
Command[1l] = (byte)FX2 Parameters.MB I2C ADDRESS;
Command[2] = (byte)FX2 Parameters.I2C BYTES;

if (TE _USB _FX2.TE USB FX2.TE USB FX2 SendCommand(ref TE USB FX2 USBDevice, ref
Command, ref CmdLength, ref Reply, ref ReplyLength, Timeout) = FALSE) return FALSE;

2)I2C_WRITE with MB_Command FX22MB_REG0O_GETVERSION at byte 7

Command[0]
//Command [1
//Command [2

= (byte)FX2 Commands.I2C WRITE; //OxAD;//command I2C WRITE
] = (byte)FX2 Parameters.MB I2C ADDRESS;
] (byte) FX2 Parameters.I2C BYTES;

Command[3] (byte)0;
Command[4] = (byte)0;
Command[5] = (byte)O0;
Command[6] = (byte)MB Commands.FX22MB REGO GETVERSION;//1l; //get FPGA version

if (TE USB _FX2.TE USB FX2.TE USB FX2 SendCommand(ref TE USB FX2 USBDevice, ref
Command, ref CmdLength, ref Reply, ref ReplyLength, Timeout) = FALSE) return FALSE;

3)GET_INTERRUPT

Command[0] = (byte)FX2 Commands.GET INTERRUPT; //0xBl;//command GET INTERRUPT

TE USB FX2.TE USB FX2.TE USB FX2 SendCommand(ref TE USB FX2 USBDevice, ref Command,
ref CmdLength, ref Reply, ref ReplylLength, Timeout)

if ((ReplyLength > 4) && (Reply[0] !'= 0))

{
//Console.WriteLine ("INT# : {0}", Replyl[O0]);
Console.WriteLine ("Major version: {0}", Replyl[l]):;
Console.WriteLine ("Minor version: {0}", Replyl[2]);
Console.WritelLine ("Release version: {0}", Reply[3]);
Console.WriteLine ("Build version: {0}", Replyl[4]):;

4.3.2.2 Table Form

This command sets address and number of bytes to read from the I2C bus when an interrupt request
is received.

Byte Value Description
1 0xBO SET_INTERRUPT command ID
2 Ox3F I2C Address
MB_I2C_ADDRESS=0x3F
3 0x0C Number of bytes to write (max 32)
From 4 to 64 - Not used

Table 29: SET_INTERRUPT Command Packet Layout.

Reply packet doesn't contain any usable information.

This command writes data (12 bytes) to requested 12C address.

Byte Value Description

1 OxAD 12C_WRITE command ID

2 0x3F 12C Address
MB_12C_ADDRESS=0x3F

3 0x0C FX2 Parameters.]2C_BYTES=0x0C

(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 0x01 MB_Commands.FX22MB_REG0_GETVERSION
It request to the MicroBlaze the return of 4 bytes
representing FPGA firmware version

From 8 to 64 - Not used

Table 30: FX22MB_REGO_GETVERSION MicroBlaze command.

Reply packet doesn't contain any usable information.

This command pulls the number of received interrupts and received data (number o bytes set by

SET INTERRUPT command) from USB FX2.

Byte

Value

Description

1

0xB1

GET_INTERRUPT command ID

From 2 to 64

Not used

Table 31: GET_INTERRUPT Command Packet Layout.

Byte Description

1, reply[0] Interrupt number.

If zero means that GET_INTERRUPT has not been able to retry
data because the interrupt created by SET_INTERRUPT has not yet
been serviced.

2, reply[1] Interrupt data [0] : Major Version
3, reply[2] Interrupt data [1] : Minor Version
4, reply[3] Interrupt data [2] : Release Version
5, reply[4] Interrupt data [3] : Build Version
From 6 to 64 Not used

Table 32: GET_INTERRUPT Reply Packet Layout.

4.3.3 FX22MB_REGO_START_TX

This command starts reading data integrity test for the data transmitted from EP6 of the USB FX2
to the host computer.

This MicroBlaze command does not require the use of SET INTERRUPT before and
GET INTERRUPT after. It is instead required to send this command before starting data
transmission from the USB FX2 to the host computer. It is also required to use
FX22MB REGO STOP after the data transmission is ended.

4.3.3.1 Combination 1 (simplified version)

Stopwatch stopWatch = new Stopwatch();
stopWatch.Start () ;

//starts test
SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO START TX, TIMEOUT MS);

test cnt = 0;
total cnt = 0;
for (int 1 = 0; i < packets; i++)
{
packetlen = PACKETLENGTH;
TE _USB_FX2.TE USB FX2.TE USB FX2 GetData(ref
TE USB FX2 USBDevice, ref buffer, ref packetlen, PI EP6,
TIMEOUT MS,BUFFER SIZE) ;
Buffer.BlockCopy (buffer, 0, data, total cnt, packetlen);
total cnt += packetlen;

}

SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO STOP, TIMEOUT MS) ;

stopWatch.Stop () ;
TimeSpan ts = stopWatch.Elapsed;

4.3.3.2 Combination 2 (simplified version)

Stopwatch stopWatch = new Stopwatch();
stopWatch.Start () ;

//starts test

test cnt = 0;
total cnt = 0;
for (int 1 = 0; i < packets; i++)
{
SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO START TX, TIMEOUT MS);
packetlen = PACKETLENGTH;
TE USB FX2.TE USB FX2.TE USB FX2 GetData (ref
TE USB FX2 USBDevice, ref buffer, ref packetlen, PI EP6,
TIMEOUT MS,BUFFER SIZE);
Buffer.BlockCopy (buffer, 0, data, total cnt, packetlen);
total cnt += packetlen;

SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO STOP, TIMEOUT MS) ;

}

stopWatch.Stop () ;
TimeSpan ts = stopWatch.Elapsed;

Note: If you use combination 2,
* the data throughput is halved with regard to combination 1 and
* the test will fail because it is not the way it is supposed to be used.

This command writes data (12 bytes) to the requested 12C address.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 0x3F I2C Address
MB 12C_ADDRESS=0x3F

3 0x0C FX2 Parameters.I2C_BYTES=0x0C

(12) Number of bytes to write (max 32)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x02 MB_Commands.FX22MB REGO START TX

from EP6 of FX2 to computer.

Start read data integrity test of data transmitted

From 8 to 64 - Not used

Table 33: FX22MB_REGO_START _TX MicroBlaze command.

Reply packet doesn't contain any usable information.

4.3.4 FX22MB_REGO_START RX

This command starts writing data integrity test for the data transmitted from the host computer to

EP8 of the USB FX2.

This MicroBlaze command does not require the use of SET INTERRUPT before and
GET INTERRUPT after. It is instead required to send this command before starting data

transmission from the host computer to the USB FX2. It is also required to
FX22MB REGO STOP after the data transmission is ended.

4.3.4.1 Combination 1 (simplified version)

Stopwatch stopWatch = new Stopwatch();
stopWatch.Start () ;

//starts test
SendFPGAcommand (ref TE_USB_FX2_USBDeVice,
MB Commands.FX22MB REGO START TX, TIMEOUT MS);

test cnt = 0;
total cnt = 0;
for (int 1 = 0; i < packets; i++)
{
packetlen = PACKETLENGTH;

Buffer.BlockCopy (data, total cnt, buffer, 0, packetlen);
TE USB FX2.TE USB FX2.TE USB FX2 SetData (ref
TE USB FX2 USBDevice, ref buffer, ref packetlen, PI EP6,
TIMEOUT MS,BUFFER SIZE);
total cnt += packetlen;
}

SendFPGAcommand (ref TE USB FX2 USBDevice,
MB Commands.FX22MB REGO STOP, TIMEOUT MS) ;

stopWatch.Stop () ;
TimeSpan ts = stopWatch.Elapsed;

4.3.4.2 Combination 2 (simplified version)

Stopwatch stopWatch = new Stopwatch();
stopWatch.Start () ;

//starts test

test cnt = 0;

total cnt = 0;

for (int i = 0; 1 < packets; i++)

{
SendFPGAcommand (ref TE USB FX2 USBDevice,

MB Commands.FX22MB REGO START TX, TIMEOUT MS);
packetlen = PACKETLENGTH;

use

Buffer.BlockCopy (data, total cnt, buffer, 0, packetlen);
TE USB FX2.TE USB FX2.TE USB _FX2 SetData(ref
TE USB FX2 USBDevice, ref buffer, ref packetlen, PI EP6,
TIMEOUT MS,BUFFER SIZE) ;
total cnt += packetlen;

SendFPGAcommand (ref TE USB FX2 USBDevice,
MBiCommandS.FXZZMB_REGO_STOP, TIMEOUT_MS);

}

stopWatch.Stop () ;
TimeSpan ts = stopWatch.Elapsed;

Note: If you make the combination 2
» data throughput is halved with regard to combination 1 and
* the test will fail because it is not the way it is supposed to be used.

This command writes data (12 bytes) to the requested [2C address.

Byte Value Description
1 OxAD 12C_WRITE command ID
2 0x3F |2C Address
MB_12C ADDRESS=0x3F

3 0x0C FX2 Parameters.]2C_BYTES=0x0C

(12) Number of bytes to write (max 32)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x03 MB_ Commands.FX22MB REGO START RX

Start read data integrity test of data transmitted
from computer to EP8 of FX2.

From 8 to 64 - Not used

Table 34: FX22MB_REGO_START_RX MicroBlaze command.

Reply packet doesn't contain any usable information

4.3.5 FX22MB_REGO0_STOP

This command stops both the test started by FX22MB REGO START TX (0x02, read test) and
FX22MB REGO START RX (0x03, write test).

This MicroBlaze command does not require the use of SET INTERRUPT before and
GET INTERRUPT after. It is instead required to send this command after

the data transmission (form the USB FX2 to the host computer or from the host computer to the
USB FX2) is ended. See 4.3.3 FX22MB _REGO_START TX and 4.3.4
FX22MB REGO START RX for more information.

This command writes data (12 bytes) to the requested [2C address.

Byte Value Description
1 OxAD 12C_WRITE command ID
2 0x3F I2C Address
MB_12C_ADDRESS=0x3F

3 0x0C FX2 Parameters.[2C_BYTES=0x0C
(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 0x04 MB_Commands.FX22MB_REGO _STOP

Stop both the test started by
FX22MB_REGO START TX (0x02, read test) and
FX22MB_REGO START RX (0x03, write test)

From 8 to 64 - Not used
Table 35: FX22MB_REGO_STOP MicroBlaze command.

Reply packet doesn't contain any usable information.

4.3.6 FX22MB_REGO_PING

This command writes data (12 bytes) to the requested 12C address. A “pong” 0x706F6E67 value
shall be returned.

Byte Value Description
1 OxAD I2C_WRITE command ID
2 0x3F |I2C Address
MB_I12C_ADDRESS=0x3F

3 0x0C FX2 Parameters.I2C_BYTES=0x0C
(12) Number of bytes to write (max 32)

4 0x00 -

5 0x00 -

6 0x00 -

7 0x05 MB_Commands.FX22MB _REGO PING

From 8 to 64 - Not used

Table 36: FX22MB_REGO_PING MicroBlaze command.

Reply packet contains the value 0x706F6E67.

5 APl Usage Example Program

5.1 First Example: select module, read firmware version, read VID/PID
This example program implements a simple console that

1. creates an instance (TE_USB_FX2 USBDevice) initialized to null of the class
CyUSBDevice

2. reads and displays the number of Trenz Electronic modules (TE_USB_FX2 ScanCards())

selects the first (0) Trenz Electronic module:

modifies the instance of the class CyUSBDevice, making this instance different from null
and properly initialized with the data of the selected Trenz Electronic module. If no module
is attached, the instance remains initialized to null.

4. reads and displays VID and PID of the selected module
5. reads the firmware version of the selected module

6. selects the second (1) Trenz Electronic module:
modifies the instance of class CyUSBDevice to represent the new selected Trenz Electronic
module. If the selected module is not attached, the instance is reinitialized to null and the
reference to the previous module (0) is lost.

7. reads the FPGA firmware version of the second (1) module

// This line creates a concrete class that is able to manage one
single FX2

//device (one single Trenz module)

CyUSBDevice TE USB FX2 USBDevice = null;

//This line creates a list of USB device that are used through

Cypress driver
USBDevicelList USBdevList = new USBDevicelList (CyConst.DEVICES) ;

//This line read the number of modules (cards) that are identified
by VID and PID //as Trenz Electronic modules

int NumberOfCardAttached =

TE USB _FX2.TE USB FX2.TE USB FX2 ScanCards (ref USBdevList);

Console.WritelLine ("The number of card is {0} ,
NumberOfCardAttached) ;

//If you want use the first Trenz Electronic module use 0
if (TE_USB FX2.TE USB FX2.TE USB FX2 Open (ref

TE USB_FX2 USBDevice, ref USBdevList, 0) == false)
Console.WritelLine ("Module i1s not connected!");
else Console.WritelLine ("Module is connected!");

byte[] Command = new byte[64];
byte[] Reply = new byte[64];
int CmdLength = 64;

int ReplyLength = 64;

uint TIMEOUT MS

1000;

i1f (TE USB FX2 USBDevice == null)

{
Console.Writeline ("Error,no device is selected");
return;

}

else

{
UIntlé VID = TE USB FX2 USBDevice.VendorID;
Console.WriteLine ("VID {0:X4} e ", VID);

UIntl6e PID = TE_USB_FXZ_USBDeVice.ProductID;
Console.WriteLine ("PID {0:X4} e ", PID);
}

//comand read FX2 version
Command[0] = (byte) X2 Commands.READ VERSION;

Console.WriteLine ("cmd[0] {0:X2} ", cmd[O0]);

if (TE_USB _FX2.TE USB FX2.TE USB FX2 SendCommand (ref
TE USB_FX2 USBDevice, ref Command, ref CmdLength, ref Reply, ref
ReplyLength, TIMEOUT MS) == true)
{
if (ReplyLength >= 4)
{
//printf ("Major version: %d \n", reply[0]);
//printf ("Minor version: %d \n", reply[1l]):;
//printf ("Device hi: %d \n", replyl[2]);
//printf ("Device lo: %d \n", reply[3]):
Console.WriteLine ("Major version: {0}", Replyl[0]);
Console.WritelLine ("Minor version: {0}", Replyl[l]):;
Console.WritelLine ("Device hi: {0}", Reply[2]);
Console.WriteLine ("Device lo: {0}", Reply[3]):
}
}
else
//cout << "Error" << endl;
Console.WriteLine ("Erroxr");

//If you want use the first Trenz Electronic module use 1
if (TE USB FX2.TE USB FX2.TE USB FX2 Open (ref

TE USB_FX2 USBDevice, ref USBdevList, 1) == false)
Console.WritelLine ("Module is not connected!");
else Console.WritelLine ("Module is connected!");

if (TE USB FX2 USBDevice == null)

{

Console.Writeline ("Error,no device is selected");
return;

}

//byte cmd[64], replyl[64];

byte[] Commandl = new bytel[64];
byte[] Replyl = new byte[64];
int CmdLengthl = 64;

int ReplyLengthl = 64;

uint TIMEOUT_MSl = 1000;
//Here two alternatives to initialize Commandl are shown

byte MB I2C ADRESS = 0x3f;
byte I2C BYTES = 12;

Commandl [0] = (byte)FX2 Commands.SET INTERRUPT;
Commandl[1] = MB I2C ADRESS;
Commandl [2] = I2C BYTES;

if (TE_USB FX2.TE USB FX2.TE USB_FX2 SendCommand (ref
TE USB FX2 USBDevice, ref Commandl, ref Cmdlengthl, ref Replyl,
ref ReplyLengthl, TIMEOUT MS) == false)
{
//cout << "Error" << endl;
Console.Writeline ("Error Send Command SET INTERRUPT");
return;

}

Commandl [0] = 0xAD;//comand I2C WRITE
Commandl [3] = O;

Commandl [4] = O;

Commandl [5] = 0;

Commandl[6] = 1; //get FPGA version

if (TE _USB_FX2.TE USB FX2.TE USB FX2 SendCommand (ref
TE USB FX2 USBDevice, ref Commandl, ref CmdLengthl, ref Replyl,
ref ReplyLengthl, TIMEOUT MS) == false)
{
//cout << "Error" << endl;
Console.Writeline ("Error Send Command Get FPGA Version");
return;

}

Commandl [0] = 0xBl;//comand (byte)FX2 Commands.GET INTERRUPT

if (TE_USB _FX2.TE USB FX2.TE USB FX2 SendCommand (ref
TE USB_FX2 USBDevice, ref Commandl, ref CmdLengthl, ref Replyl,
ref ReplyLengthl, TIMEOUT MS) == true)
{
if ((ReplyLengthl > 4) && (Replyl[0] != 0))
{
//Console.WriteLine ("INT# : {0}", replyI[0]);
Console.WriteLine ("Major version: {0}", Replyl[1l])
Console.WritelLine ("Minor version: {0}", Replyl[2]);
Console.Writeline ("Release version: {0}", Replyl[3]);
Console.WriteLine ("Build version: {0}", Replyl[4])

4

4

}
else Console.WriteLine ("Error, GET INTERRUPT");

5.2 Second Example: Read Test
See section 4.3.3 FX22MB_REGO0_START_TX.

5.3 Third Example: Write Test
See section 4.3.4 FX22MB_REGO0_START_RX.

6 TE_USB_FX2_CyUSB.dII:
Data Transfer Throughput Optimization

6.1 Introduction

XferSize is the dimension (in bytes) of the buffer reserved (on the host computer) for the
data transfer over the USB channel between one USB FX2 endpoint and the host
computer.

PacketSize is the dimension (in bytes) of the data array to be transferred over the USB
channel between one USB FX2 endpoint and the host computer. This data array is
subdivided into packets of dimension < MaxPktSize = 512 and scheduled for transmission over

the USB channel.

6.2 XferSize (driver buffer size) Influence

Given a PacketSize of 102,400 bytes (it can be subdivided into 200 USB packets of 512 bytes), the
influence of XferSize (driver buffer size reserved for data communication) on the throughput is
reported in the following table.

Throughput
XferSize (bytes) (Mbyte/s)

PacketSize = 102,400 bytes

4,096 (Cypress Default) 15.4

8,192 20.4

16,384 26.7

32,768 30.4

65,536 34.2

131,072 36.5

262,144 36.8

Table 37: data throughput as a function of XferSize given PacketSize = 102,400 bytes.

To change XferSize in C#, the method

endpointIdentifier.XferSize = DesiredValue;
shall be used. Cypress sets DesiredValue to 4,096 bytes by default. This default value is not
documented in the CyUSB.dll manual (pag 110-111 of CyUSB.NET.pdf), but it has been retrieved
by using the following C# instructions:

int XferSizeReadValue = outEndPointPipeNo.XferSize;
Console.WritelLine ("XferSize {0} ", XferSizeReadValue);

6.3 PacketSize (transfer data size) Influence

Given an XferSize (driver buffer size) of 131,072 bytes, the influence of PacketSize on the
throughput is reported in the following table.

Packet Size (bytes) Throughput (Mbyte/s)
XferSize = 131,072 Bytes
512 2.26
1,024 415
2,048 7.78
4,096 15.44
8,192 20.23
16,384 25.34
32,768 31.18
65,536 35.52
131,072 37.06

Table 38: data throughput as a function of PacketSize given XferSize = 102,400 bytes.

To transfer the array of data with dimension PacketSize in C#, the method XferData() shall be used.

6.4 Conclusion
If a higher throughput is desired,
1. the value of XferSize shall be greater than the default one
2. the data to be transferred shall be organized in large data array(s)

Recommended values are :

* XferSize = 131,072 bytes and PacketSize = 131,072 bytes
for a throughput of =~ 37 Mbyte/s.

* XferSize = 65,536 bytes and PacketSize = 65,536 bytes
for a throughput of = 35 Mbyte/s.

6.5 Appendix : Charts

Throughput Vs XferSize
PacketSize 102400 Byte

40
35
30
25
20
15
10

=== Throughput

Throughput Mb/s

0 20000 40000 60000 80000 100000 120000 140000
XferSize Byte

Chart 1: data throughput [Mbyte/s] as a function of XferSize [byte] given PacketSize = 102,400
bytes.

Throughput vs PacketSize

XferSize (driver buffer) 131072 byte

40
35
30
25
20
15
10

=== Throughput

Throughput Mb/s

0 20000 40000 60000 80000 100000 120000 140000
Packet Size Byte

Chart 2: data throughput [Mbyte/s] as a function of PacketSize [byte] given XferSize = 102,400
bytes.

7 Document Change History

versio date auth description
n or
09 2012-06-01 | °F_ |Release Preview
: FDR :
1.0 Initial release.

1.2 2013-04-05 |FDR |Improved "Hardware, firmware and software stack" table.

8 Bibliography
[1] TEO3xx Series Application Notes, Xilinx Spartan-3* Industrial-Grade FPGA Micromodules
AN-TEO03xx (v2.01) April 6, 2011

http:/www.trenz-
electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-

TEO03xx.pdf
[2] AN14557 - Introduction to CyUSB.dll Based Application Development Using C#

Last Updated: 02/20/2012
http://www.cypress.com/?rID=12974
[3] Cypress CyUSB Programmer's Reference, 2010 Cypress Semiconductor

more recent version inside Cypress Suite USB 3.4.7

http://cosmiac.ece.unm.edu/images/b/be/CyUSB_NET.pdf
[4] Cypress CyUsb.sys Programmer's Reference

http://www.cypress.com/?docID=26658

http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0300_series/TE0300/documents/AN-TE03xx.pdf
http://www.cypress.com/?docID=26658%20
http://cosmiac.ece.unm.edu/images/b/be/CyUSB_NET.pdf
http://www.cypress.com/?rID=12974

	1 Introduction
	1.1 API Functions (First API Set)
	1.1.1 Synchronous Functions
	1.1.2 Timeout Setting
	1.1.3 BufferSize (also called XferSize)
	1.1.4 PacketSize

	1.2 MicroBlaze API Commands (Second API Set)

	2 Requirements
	3 API Functions
	3.1 TE_USB_FX2_ScanCards()
	3.1.1 Declaration
	3.1.2 Function Call
	3.1.3 Description
	3.1.4 Parameters
	3.1.5 Return Value

	3.2 TE_USB_FX2_Open()
	3.2.1 Declaration
	3.2.2 Function Call
	3.2.3 Description
	3.2.4 Parameters
	3.2.5 Return Value

	3.3 TE_USB_FX2_Close()
	3.3.1 Declaration
	3.3.2 Function Call
	3.3.3 Description
	3.3.4 Parameters
	3.3.5 Return Value

	3.4 TE_USB_FX2_SendCommand()
	3.4.1 Declaration
	3.4.2 Function Call
	3.4.3 Description
	3.4.4 Parameters
	3.4.5 Return Value

	3.5 TE_USB_FX2_GetData()
	3.5.1 Declaration
	3.5.2 Function Call
	3.5.3 Description
	3.5.4 Expected Data Throughput
	3.5.5 DataRead Size Shall Not Be Too Large
	3.5.5.1 Reduced version (pseudo code)
	3.5.5.2 Expanded version (code)

	3.5.6 DataRead Size Shall Not Be Too Small
	3.5.7 Parameters
	3.5.8 Return Value

	3.6 TE_USB_FX2_SetData()
	3.6.1 Declaration
	3.6.2 Function Call
	3.6.3 Description
	3.6.4 Data throughput expected
	3.6.5 DataWrite size shall not be too large
	3.6.5.1 Reduced version (pseudo code)
	3.6.5.2 Expanded version (code)

	3.6.6 DataWrite size shall not be too small
	3.6.7 Parameters
	3.6.8 Return Value

	4 API Commands
	4.1 Introduction
	4.1.1 Reference Architecture
	4.1.2 Custom Logic Block

	4.2 USB FX2 API Commands
	4.2.1 READ_VERSION
	4.2.2 INITIALIZE
	4.2.3 READ_STATUS
	4.2.4 RESET_FIFO
	4.2.5 FLASH_READ
	4.2.6 FLASH_WRITE
	4.2.7 FLASH_ERASE
	4.2.8 EEPROM_READ
	4.2.9 EEPROM_WRITE
	4.2.10 FIFO_STATUS
	4.2.11 I2C_WRITE
	4.2.12 I2C_READ
	4.2.13 POWER
	4.2.14 FLASH_WRITE_COMMAND
	4.2.15 SET_INTERRUPT
	4.2.16 GET_INTERRUPT

	4.3 MicroBlaze API Commands
	4.3.1 FX22MB_REG0_NOP
	4.3.2 FX22MB_REG0_GETVERSION
	4.3.2.1 Code Form
	4.3.2.2 Table Form

	4.3.3 FX22MB_REG0_START_TX
	4.3.3.1 Combination 1 (simplified version)
	4.3.3.2 Combination 2 (simplified version)

	4.3.4 FX22MB_REG0_START_RX
	4.3.4.1 Combination 1 (simplified version)
	4.3.4.2 Combination 2 (simplified version)

	4.3.5 FX22MB_REG0_STOP
	4.3.6 FX22MB_REG0_PING

	5 API Usage Example Program
	5.1 First Example: select module, read firmware version, read VID/PID
	5.2 Second Example: Read Test
	5.3 Third Example: Write Test

	6 TE_USB_FX2_CyUSB.dll: Data Transfer Throughput Optimization
	6.1 Introduction
	6.2 XferSize (driver buffer size) Influence
	6.3 PacketSize (transfer data size) Influence
	6.4 Conclusion
	6.5 Appendix : Charts

	7 Document Change History
	8 Bibliography

